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Abstract.   10 

The ground-based observations show a phase shift of semi-annual variation of excited 11 

hydroxyl (OH*) emissions at mid-latitudes (43° N) compared to those at low latitudes. This 12 

differs from the annual cycle at high latitudes. We examine this behavior based on an 13 

advanced model of excited hydroxyl production/relaxation, which is part of the 3D chemistry-14 

transport model (CTM). By modelling this, we study the morphology of the excited hydroxyl 15 

emission layer at mid-latitudes (30° N -50° N), and we assess the impact of the main drivers 16 

on semi-annual variation of excited hydroxyl layer at mid-latitudes: temperature, atomic 17 

oxygen, and air density. We found that such a shift of the semi-annual cycle is determined 18 

mainly by the superposition of atomic oxygen and annual temperature cycles. The winter peak 19 

for emission is determined exclusively by the atomic oxygen concentration, whereas the 20 

summer peak is the superposition of all impacts, with temperature taking a leading role. 21 

 22 

1. Introduction 23 

 24 

 Since the second-half of the 20th century, the emissions of excited hydroxyl have been 25 

used for three main directions: 1) to infer information about temperature and its long-term 26 
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changes; 2) to obtain distributions of minor chemical constituents (ozone, atomic hydrogen, 27 

and atomic oxygen) in the mesopause region; and 3) for investigations of dynamic processes 28 

such as sudden stratospheric warmings (SSWs), quasi-biennial oscillation (QBO), gravity 29 

waves (GWs), planetary waves (PWs), and tides.  30 

Hence, a number of authors have derived temperatures for the mesopause using ground-based 31 

observations (Bittner et al., 2000; Holmen et al., 2014). Bittner et al. (2002), Espy and 32 

Stegman (2002), Offermann et al. (2010), Holmen et al. (2014), and Dalin et al. (2020) 33 

inferred temperature trends in the mesopause region by means of this technique. A large 34 

number of investigations have focused on seasonal variations of temperature (e.g. Espy et al., 35 

2007; Reid et al., 2017). The solar-cycle effect on temperature by means of OH* emissions 36 

was investigated in works by Espy and Stegman (2002), Pertsev and Perminov (2008), 37 

Offermann et al. (2010), Holmen et al. (2014) and Kalicinsky et al. (2016). 38 

Minor chemical constituents as well as chemical heat have also been the focus of airglow 39 

observations. Since the first determination of atomic oxygen concentration by the rocket-born 40 

detection of OH* airglow (Good, 1976), this method has come into wide use. Russell et al. 41 

(2005), Smith et al. (2010) and Mlynczak et al. (2013 a, b) retrieved atomic oxygen density 42 

through satellite-based observations of emissions from OH* Meinel bands. Smith et al. (2009) 43 

used airglow measurements to derive the ozone concentration, and Thomas (1990), Takahashi 44 

et al. (1996), and Mlynczak et al. (2014) retrieved atomic hydrogen, which is almost 45 

impossible to infer using other methods at mesopause altitudes. The exothermic chemical heat 46 

was derived by airglow measurements in the work by Mlynczak et al. (2013b). 47 

Numerous works, which used airglow observations, have been devoted to dynamic processes. 48 

Thus, Shepherd et al. (2010) and Damiani et al. (2010) applied OH* airglow measurements to 49 

study mesopause variabilities in time of SSWs. Gao et al. (2011) studied the temporal 50 

evolution of nightglow brightness and height during SSW events. A year earlier, they found a 51 

QBO signal in the excited hydroxyl emission (Gao et al., 2010). The climatology of PWs was 52 
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investigated in works by Takahashi et al. (1999), Buriti et al. (2005), Lopez-Gonzalez et al. 53 

(2009), Reisin et al. (2014), and tides were studied in papers by Lopez-Gonzalez et al. (2005) 54 

and Xu et al. (2010). GW parameters based on the airglow technique were investigated, for 55 

example, in works by Taylor et al. (1991, 1998), Wachter et al. (2015). Shepherd et al. (2012) 56 

give a more complete description of works, in which hydroxyl emissions were used to study 57 

dynamic processes. 58 

The morphology of the OH* layer is an essential subject for the interpretation of observations 59 

and for understanding the processes involved in layer variability. Annual variations of the 60 

OH* layer have been identified at all latitudes (Marsh et al., 2006). The semi-annual 61 

variations near the equator and at low latitudes have been observed by satellites (Abreu and 62 

Yee, 1989; Marsh et al. 2006; Liu et al., 2008) as well as by ground-based instruments 63 

(Takahashi et al., 1995), and have been modeled by several research teams (Le Texier et al., 64 

1987; Marsh et al., 2006; Liu et al., 2008). Peak emissions were found to occur near 65 

equinoxes. In spite of large number of studies on this subject, there are still gaps in our 66 

knowledge. Recently, the unexpected behavior of hydroxyl emissions semi-annual cycle with 67 

a shift of the peaks from equinoxes to summer and winter at middle latitudes has been found 68 

by ground based observations (Popov et al., 2018; Popov et al., 2020) and independently by 69 

modelling (Grygalashvyly et al., 2014, Fig. 3). Similar variations in OH* emissions with 70 

peaks near equinoxes have been observed at middle latitudes (34.6° N) in the southern 71 

hemisphere (Reid et al., 2014). These results were provided without explanations for them; in 72 

our short note, we offer a preliminary explanation. 73 

The manuscript is structured as follows: in the second section, we describe the observational 74 

technique and model that were applied; in the third section, we present some results and an 75 

analysis of observations and modelling; the concluding remarks and summary are provided in 76 

the last section.  77 

  78 
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2. Observational technique and model 79 

 80 

2.1. Observational technique 81 

 82 

The spectral airglow temperature imager (SATI), which measures nightglow intensity for 83 

vibrational transitions of OH*
v=6→OH*

v=2 and temperature using vibrational-rotational 84 

transitions, is assembled at the Institute of Ionosphere (43° N, 77° E) in Almaty, Kazakhstan. 85 

It represents a Fabry-Perot spectrometer with a CCD (charge-coupled device) camera as a 86 

detector and a narrow-band interference filter as the etalon. Following Lopez-Gonzalez et al. 87 

(2007), we use an interference filter with the center at 836.813 nm and a bandwidth of 0.182 88 

nm. This corresponds to the spectral region of the OH*(6-2) band. In order to infer the 89 

temperature, the calculated spectra for different vibro-rotational transitions are compared with 90 

those from observations. The SATI operates at a sixty seconds exposure that provides 91 

corresponding time resolution. The method of temperature retrieval is well-described by 92 

Lopez-Gonzalez et al. (2004). The observations of temperature were validated using satellite 93 

SABER measurements (Lopez-Gonzalez et al., 2007; Pertsev et al., 2013).  Additional details 94 

about this instrument can be found in a number of works (Wies et al., 1997; Aushev et al., 95 

2000; Lopez-Gonzalez et al., 2004, 2005, 2007, 2009). 96 

 97 

2.2. Model and numerical experiment 98 

 99 

The model of the excited hydroxyl (MEH) calculates the OH* number densities at each 100 

vibrational level v as the ratio of production term to the loss term (excited hydroxyl is 101 

assumed in the photochemical equilibrium). In the production and loss terms, we summarize 102 

contributions due to the chemical reactions, deactivation by quenching and spontaneous 103 

emission: 104 
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�
, �𝑣𝑣 < 𝑣𝑣′
𝑣𝑣′′ < 𝑣𝑣� .                (1)                105 

The first term in the numerator of (1) is the reaction of ozone with atomic hydrogen, where k1 106 

is the reaction rate and vf  is the nascent distribution according to Adler-Golden (1997). The 107 

second term is the reaction of hydroperoxy with atomic oxygen, where 𝑘𝑘2 and ve  are the 108 

reaction rate and nascent distribution, respectively (e.g. Takahashi and Batista, 1981; Kaye, 109 

1988).  The 3rd, 4th and 5th terms are the transitions from the highest vibrational levels due to 110 

quenching, where p, q, Q are the rates for quenching by atomic oxygen (Caridade et al., 111 

2013), molecular nitrogen (Makhlouf et al., 1995) and molecular oxygen (Adler-Golden, 112 

1997), respectively. The last term represents multi-quantum transitions due to spontaneous 113 

emissions with Einstein coefficients Av`v following Xu et al. (2012). The loss, additionally, 114 

includes the reaction of excited hydroxyl with atomic oxygen, where k3(v) is the vibrationally 115 

dependent reaction rate (Varandas et al., 2004). This model is incorporated into the chemistry-116 

transport model (CTM). 117 

Here, we enumerate only the main features of the CTM, because one can find extended 118 

descriptions in a large number of papers (e.g., Sonnemann and Grygalashvyly, 2020; 119 

Grygalashvyly et al., 2014; and references therein). The model consists of four blocks: 120 

chemical, transport, radiative, and diffusive. The chemical block takes into account 19 121 

constituents, 49 chemical reactions and 14 photodissociation processes. The reaction rates 122 

used in the model are taken from Burkholder et al. (2015). The chemistry is based on a family 123 

concept (Shimazaki, 1985), considering the odd-hydrogen (H, OH, HO2, H2O2), the odd-124 

oxygen (O, O(1D), O3), and the odd-nitrogen (NO, NO2, N(4S), N(2D)) families. In the 125 

radiative part, the dissociation rates are taken from a pre-calculated library depending on 126 

height and zenith angle (Kremp et al., 1999). The transport block calculates advections in 127 

three directions following Walcek (2000). The diffusive part takes into account only vertical 128 
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turbulent and molecular diffusivity according to Colegrove et al. (1965), and Morton and 129 

Mayers (1994). This model has been validated against observations of ozone, which takes part 130 

in OH* formation (e.g. Hartogh et al., 2011; Sonnemann et al., 2007; and references therein), 131 

and water vapour, which is the principal source of odd-hydrogens, and particularly of atomic 132 

hydrogen (e.g. Hartogh et al., 2010; Sonnemann et al., 2008; and references therein). Our 133 

current analysis is based on the calculations for year 2009. This run was published and 134 

described in works by Grygalashvyly et al. (2014), section 4, and Sonnemann et al. (2015). 135 

 For the model results we assume the equivalence of longitudinal directed structures to local 136 

time dependencies over a day, with midnight linked to midnight at Greenwich longitude. The 137 

local times of successive longitudes are employed to analyze the data. Hence, in the following 138 

figures related to the model results, the longitude is used as the so-called pseudo time. The 139 

nighttime averaged values take into account the period from 21:45 LT to 2:15 LT. For the 140 

purposes of our discussion, we use the so-called pseudo altitude 𝑧𝑧∗ = −𝑂𝑂 ln(𝑝𝑝 𝑝𝑝0⁄ ), where 𝑝𝑝 141 

is pressure, 𝑝𝑝0 = 1013 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the surface pressure, and 𝑂𝑂 = 7 𝑘𝑘𝑚𝑚 is the scale height. 142 

 143 

3. Results and discussion 144 

 145 

Figure 1 a) shows the monthly mean nightly averaged values of the observed annual 146 

variability of intensity at 43° N (red line) and modeled annual variability of volume emission 147 

at peak of OH* layer at 43.75° N (black line), both for transition OH*
v=6→OH*

v=2. The error 148 

bar shows standard deviation. By the observations as well as by modelling, we can see clear 149 

semi-annual variations of emissions with peaks in winter and summer.  150 

A number of works (e.g. Grygalashvyly et al., 2014; Sonnemann et al., 2015; Grygalashvyly, 151 

2015) have shown that the concentration of excited hydroxyl (hence, volume emission and 152 

intensity) at peak is directly proportional to the product of the surrounding pressure (hence, it 153 

depends on altitude) with atomic oxygen concentration and inversely proportional to the 154 
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power of temperature (Eq. A2 in the Appendix). Thus, in order to infer the reasons for this 155 

semi-annual variation, one should consider three drivers of OH* variability, namely, 156 

temperature, atomic oxygen concentration and height of the layer. 157 

Figure 1 b) shows the monthly mean nightly averaged values of the observed annual 158 

variability of temperature at 43° N (red line) and the modelled annual variability of 159 

temperature at the peak of the OH* layer at 43.75° N (black line). The observations, as well as 160 

the modelling, show minima in summer and maxima in winter. Hence, the temperature 161 

decline can be one of the reasons for the summer peak of intensity (and volume emission). 162 

Figures 1 c) and d) depict modelled monthly mean nightly averaged values of atomic oxygen 163 

at a peak of OH*
v=6 and height of excited hydroxyl peak, respectively, at 43.75° N. The 164 

modelling shows the peaks of atomic oxygen concentration in July and December–January, 165 

with the largest values in winter. The variation of height through the year occurs between ~90 166 

km and 94 km. This is essential variability and gives input into the variability of the 167 

concentration of the surrounding air.  168 

In order to study the morphology of this semi-annual variation and assess the impacts of 169 

temperature, atomic oxygen concentration, and height (concentration of air) variability, we 170 

calculate one-month sliding averaged values based on the model results. Figure 2 illustrates 171 

the modelled annual variability at the peak of OH*
v=6 layer: a) volume emission (OH*

v=6 172 

→OH*
v=2), b) temperature, c) atomic oxygen concentration, and d) height.  173 

The summer maximum of volume emission (Fig. 2a) has the strongest values in July and is 174 

extended from ~30° N to ~50° N. The summer maximum is stronger than that in winter. The 175 

winter maximum has its strongest values in January and a positive gradient into the winter 176 

pole direction. At latitudes 30°–50° N, it represents the rest of the annual variation at high 177 

latitudes, which occurs because of the annual variability of the general mean circulation and 178 

corresponding atomic oxygen fluxes (Marsh et al., 2006; Liu et al., 2008). Similar behavior of 179 

the emissions for transition OH*
v=8 →OH*

v=3 was captured by WINDII (Wind Imaging 180 
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Interferometer) and modelled by TIME-GCM (Thermosphere-Ionosphere-Mesosphere 181 

Electrodynamics General Circulation Model) at 84–88 km (Fig. 5 and 6; Liu et al., 2008).  182 

The temperature (Fig. 2b) shows a clear annual variation from the middle to the high 183 

latitudes, with a minimum ~150 K at middle latitudes in July. The summer minimum at the 184 

middle latitudes is the echo of those at high latitudes. The atomic oxygen (Fig. 2c) reveals 185 

annual cycle with larger concentrations in winter and smaller concentrations in summer 186 

(Smith et al., 2010) at high and middle latitudes beside the region between ~30°–50° N in 187 

summer, where it shows one additional peak in June–July. Formation of this summer peak can 188 

be explained by the transformed Eulerian mean (TEM) circulation (Limpasuvan et al., 2012, 189 

Fig. 7; Limpasuvan et al., 2016, Fig. 5), which brings into the summer hemisphere the air 190 

reached by atomic oxygen from the region of its production at high latitudes above 100 km to 191 

~90 km at middle latitudes. The altitude of the peak of the OH* layer (Fig. 2d) shows 192 

complex annual variability. There is a secondary maximum OH* peak at ~30°–50° N in 193 

summer.     194 

In order to assess input into annual variability from different sources we calculate relative to 195 

annual averaged variations of volume emissions due to atomic oxygen, temperature, and air 196 

number density (Eq. A6). The derivation of these parameters is presented in the appendix. 197 

The similar approach can be useful for an analysis of emission variations due to GWs, PWs, 198 

and tides. 199 

Figure 3a shows relative variations of emissions due to impacts of atomic oxygen (black line), 200 

temperature (red line), and air density (green line) at 43.75° N. The strongest emission 201 

variation occurs because of changes in atomic oxygen concentration. The amplitude of its 202 

relative deviation amounts to ~50 %. The amplitudes of relative deviations of emissions due 203 

to temperature and air density amount to ~15 % and ~20 %, respectively. The atomic oxygen 204 

variation gives the most essential input into the winter maximum of emission (black line). 205 

Because of the downward transport of atomic oxygen in winter, the volume emission rises by 206 
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~50 % over the annually averaged volume emission. The summer maximum is determined by 207 

the superposition of all three factors. After the spring reduction of emissions due to the 208 

decline of atomic oxygen concentration (~-40 % of annual averaged values), it rises again up 209 

to the approximately annual averaged values in June–July. This is synchronized with the 210 

growth of volume emissions by ~20 % over the annual average values due to summer 211 

temperature declines (red line) and with the growth of volume emissions by ~15 % over the 212 

annual average due to the decline of peak altitude in April–September and the corresponding 213 

rise of air density (green line).  214 

Figure 3b illustrates relative variations of emissions due to second momenta (Eq. A7 in the 215 

appendix). The second momenta does not give an essential input in annual variation. The 216 

strongest among them, [𝑂𝑂]′𝑀𝑀′

[𝑂𝑂]����𝑀𝑀�
 (blue line), gives emission variability with an amplitude ~6 % of 217 

annual averaged values. 218 

In the context of our short note, the ultimate question about the role of tides and GWs on 219 

semi-annual variations of OH* emissions at middle latitudes has not been answered. 220 

Undoubtedly, the simultaneous analysis of observations of excited hydroxyl emissions from 221 

several stations is desirable to highlight this question. 222 

 223 

4. Summary and conclusions 224 

 225 

 Based on observations and numerical simulation, we confirmed the existence of a 226 

semi-annual cycle of OH* emission at middle latitudes. The emission has maxima in summer 227 

(June–July) and in winter (December–January). The annual variability of the general mean 228 

circulation and corresponding variability of atomic oxygen concentration was found to be the 229 

main reason for the winter maximum of the OH* emission. The summer maximum is the 230 

superposition of three different processes, namely: atomic oxygen meridional transport due to 231 
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residual circulation from the summer pole to the equator; temperature decline, which 232 

represents the rest of the mesopause cooling at high latitudes in summer; and the growth of air 233 

concentration at the peak of OH* emission layer because of the layer descent at middle 234 

latitudes in April–September.  235 

 236 

Appendix. 237 

 238 

In order to derive the expressions for the variations of excited hydroxyl due to different 239 

impacts, we start from a simplified equation for excited hydroxyl concentration. 240 

Taking into account that the ozone is in the photochemical equilibrium in the vicinity of the 241 

[𝑂𝑂𝑂𝑂𝑣𝑣] layer and above at nighttime conditions (Belikovich et al., 2018; Kulikov et al., 2018; 242 

Kulikov et al., 2019); utilizing the equation for ozone balance for nighttime (𝑘𝑘4[𝑂𝑂][𝑂𝑂2][𝑀𝑀] =243 

𝑘𝑘1[𝑂𝑂3][𝑂𝑂] + 𝑘𝑘5[𝑂𝑂][𝑂𝑂3]), where 𝑘𝑘4 and 𝑘𝑘5 are the reaction rates for the reactions of atomic 244 

oxygen with molecular oxygen and atomic oxygen with ozone, respectively; omitting the 245 

reaction of atomic oxygen with ozone as relatively slow (Smith et al., 2008); substituting the 246 

reduced ozone balance equation for the excited hydroxyl balance equation (first term in the 247 

numerator of Eq. (1)); assuming that the most effective production of excited hydroxyl occurs 248 

due to the reaction of atomic hydrogen with ozone, and the most effective losses are the 249 

quenching with molecular oxygen, we obtain from Eq. (1) a simplified expression where 250 

excited hydroxyl concentration is represented in terms of atomic oxygen concentration, 251 

temperature (in 𝑘𝑘4), and concentration of the surrounding air: 252 

[𝑂𝑂𝑂𝑂𝑣𝑣] ≈ 𝜇𝜇𝑣𝑣𝑘𝑘4[𝑂𝑂][𝑀𝑀].                                                                                                                         (𝐴𝐴1) 253 

Here 𝜇𝜇𝑣𝑣 =
𝑓𝑓𝑣𝑣+∑ 𝜇𝜇𝑣𝑣′𝑄𝑄𝑣𝑣′𝑣𝑣𝑣𝑣′=9

𝑣𝑣′=𝑣𝑣+1

∑ 𝑄𝑄𝑣𝑣𝑣𝑣′′𝑣𝑣′′=𝑣𝑣−1
𝑣𝑣′′=0

,   (𝑓𝑓𝑣𝑣>9 = 0) are the coefficients which represent the arithmetic 254 

combination of branching ratios 𝑓𝑓𝑣𝑣 and quenching coefficients 𝑄𝑄𝑣𝑣′𝑣𝑣. The more comprehensive 255 

derivation of (A1) one can find in number of works (e.g. Grygalashvyly et al., 2014; 256 
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Grygalashvyly, 2015; Grygalashvyly and Sonnemann, 2020). Although this is too simplified 257 

to be used for precise calculations, it is useful for obtaining information about impacts and 258 

assessing the variabilities.  259 

Multiplying (A1) by Einstein-coefficient 𝐴𝐴𝑣𝑣𝑣𝑣′′ for given transition, writing reaction rate 260 

explicitly 𝑘𝑘4 = 6 ∙ 10−34(300 𝑇𝑇⁄ )2.4 (Burkholder et al., 2015), and collecting all constants in 261 

𝜒𝜒𝑣𝑣𝑣𝑣′′, we get an expression for volume emission in terms of atomic oxygen concentration, 262 

temperature, and air number density: 263 

𝑉𝑉 ≈ 𝜒𝜒𝑣𝑣𝑣𝑣′′𝑇𝑇−2.4[𝑂𝑂][𝑀𝑀],                                                                                                                        (𝐴𝐴2) 264 

where 𝜒𝜒𝑣𝑣𝑣𝑣′′ = 𝜇𝜇𝑣𝑣𝐴𝐴𝑣𝑣𝑣𝑣′′ ∙ 6 ∙ 10−34 ∙ 3002.4. 265 

Next, we apply to the temperature, atomic oxygen concentration, and concentration of air in 266 

(A2) Reynolds decomposition by averaged and variable part: 267 

𝑉𝑉 ≈ 𝜒𝜒𝑣𝑣𝑣𝑣′′(𝑇𝑇� + 𝑇𝑇′)−2.4�[𝑂𝑂]���� + [𝑂𝑂]′��[𝑀𝑀]����� + [𝑀𝑀]′�,                                                                        (𝐴𝐴3) 268 

where 𝑇𝑇,� [𝑂𝑂]����, [𝑀𝑀]����� are average parts, and 𝑇𝑇′, [𝑂𝑂]′, [𝑀𝑀]′ are the corresponding varying parts. 269 

After the decomposing term with temperature in the Taylor expansion and cross-multiplying 270 

all terms of (A3), we obtain: 271 

𝑉𝑉 ≈ 𝜒𝜒𝑣𝑣𝑣𝑣′′𝑇𝑇�−2.4[𝑂𝑂]���� ∙ [𝑀𝑀]����� + 𝜒𝜒𝑣𝑣𝑣𝑣′′𝑇𝑇�−2.4[𝑂𝑂]����[𝑀𝑀]′ + 𝜒𝜒𝑣𝑣𝑣𝑣′′𝑇𝑇�−2.4[𝑂𝑂]′[𝑀𝑀]����� − 2.4𝜒𝜒𝑣𝑣𝑣𝑣′′𝑇𝑇′𝑇𝑇�−3.4[𝑂𝑂]���� ∙272 

[𝑀𝑀]����� + 𝜒𝜒𝑣𝑣𝑣𝑣′′𝑇𝑇�−2.4[𝑂𝑂]′[𝑀𝑀]′ − 2.4𝜒𝜒𝑣𝑣𝑣𝑣′′𝑇𝑇′𝑇𝑇�−3.4[𝑂𝑂]����[𝑀𝑀]′ − 2.4𝜒𝜒𝑣𝑣𝑣𝑣′′𝑇𝑇′𝑇𝑇�−3.4[𝑂𝑂]′[𝑀𝑀]����� −273 

2.4𝜒𝜒𝑣𝑣𝑣𝑣′′𝑇𝑇′𝑇𝑇�−3.4[𝑂𝑂]′[𝑀𝑀]′.                                                                                                                    (𝐴𝐴4)  274 

The volume emission for a given transition can be represented as follows: 275 

𝑉𝑉 ≈ 𝑉𝑉� + 𝑉𝑉′𝑀𝑀 + 𝑉𝑉′𝑂𝑂 + 𝑉𝑉′𝑇𝑇 + 𝑉𝑉′′𝑂𝑂𝑀𝑀 + 𝑉𝑉′′𝑇𝑇𝑀𝑀 + 𝑉𝑉′′𝑇𝑇𝑂𝑂 + ℎ𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚,                        (𝐴𝐴5) 276 

where, 𝑉𝑉� = 𝜒𝜒𝑣𝑣𝑣𝑣′′𝑇𝑇�−2.4[𝑂𝑂]���� ∙ [𝑀𝑀]�����,𝑉𝑉′𝑀𝑀 = 𝜒𝜒𝑣𝑣𝑣𝑣′′𝑇𝑇�−2.4[𝑂𝑂]����[𝑀𝑀]′,𝑉𝑉′𝑂𝑂 = 𝜒𝜒𝑣𝑣𝑣𝑣′′𝑇𝑇�−2.4[𝑂𝑂]′[𝑀𝑀]�����,𝑉𝑉′𝑇𝑇 =277 

−2.4𝜒𝜒𝑣𝑣𝑣𝑣′′𝑇𝑇′𝑇𝑇�−3.4[𝑂𝑂]���� ∙ [𝑀𝑀]�����,𝑉𝑉′′𝑂𝑂𝑀𝑀 = 𝜒𝜒𝑣𝑣𝑣𝑣′′𝑇𝑇�−2.4[𝑂𝑂]′[𝑀𝑀]′,𝑉𝑉′′𝑇𝑇𝑀𝑀 =278 

−2.4𝜒𝜒𝑣𝑣𝑣𝑣′′𝑇𝑇′𝑇𝑇�−3.4[𝑂𝑂]����[𝑀𝑀]′,  𝑉𝑉′′𝑇𝑇𝑂𝑂 = −2.4𝜒𝜒𝑣𝑣𝑣𝑣′′𝑇𝑇′𝑇𝑇�−3.4[𝑂𝑂]′[𝑀𝑀]�����. 279 

Hence, relative deviations (RD) of emissions due to variations of atomic oxygen, temperature, 280 

and concentration of air are: 281 
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𝑅𝑅𝑅𝑅𝑂𝑂′ = 100% ∙
𝑉𝑉𝑂𝑂′

𝑉𝑉�
= 100% ∙

[𝑂𝑂]′

[𝑂𝑂]���� ,

𝑅𝑅𝑅𝑅𝑇𝑇′ = 100% ∙
𝑉𝑉𝑇𝑇′

𝑉𝑉�
= 100% ∙ −2.4

𝑇𝑇′

𝑇𝑇�
,

𝑅𝑅𝑅𝑅𝑀𝑀′ = 100% ∙
𝑉𝑉𝑀𝑀′

𝑉𝑉�
= 100% ∙

[𝑀𝑀]′

[𝑀𝑀]����� .

                                                                                            (𝐴𝐴6) 282 

The relative deviations (RD) of emission due to second momenta are 283 

𝑅𝑅𝑅𝑅𝑂𝑂𝑀𝑀′′ = 100% ∙
𝑉𝑉𝑂𝑂𝑀𝑀′′

𝑉𝑉�
= 100% ∙

[𝑂𝑂]′[𝑀𝑀]′

[𝑂𝑂]����[𝑀𝑀]����� ,

𝑅𝑅𝑅𝑅𝑇𝑇𝑀𝑀′′ = 100% ∙
𝑉𝑉𝑇𝑇𝑀𝑀′′

𝑉𝑉�
= 100% ∙ −2.4

𝑇𝑇′[𝑀𝑀]′

𝑇𝑇�[𝑀𝑀]����� ,

𝑅𝑅𝑅𝑅𝑇𝑇𝑂𝑂′′ = 100% ∙
𝑉𝑉𝑇𝑇𝑂𝑂′′

𝑉𝑉�
= 100% ∙ −2.4

𝑇𝑇′[𝑂𝑂]′

𝑇𝑇�[𝑂𝑂]���� .

                                                                              (𝐴𝐴7) 284 

 285 
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Figures 629 

Figure 1. Observed at 43° N (black line) and modelled at 43.75° N (red line) annual 630 

variability of intensity and volume emission (a), temperature (b), atomic oxygen 631 

concentration (c), and height at the peak of the OH*
v=6 layer. 632 
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Figure 2. Nightly mean one-month sliding averaged volume emission (a), temperature (b), 644 

atomic oxygen at peak of OH*
v=6 (c), and height of peak of OH*

v=6. 645 
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Figure 3. a) relative to annual averaged variations of volume emission due to atomic oxygen 658 

(black line), temperature (red line), and height (green line) at 43.75° N; b) relative variations 659 

of volume emission due to second momentum [𝑂𝑂]′𝑀𝑀′

[𝑂𝑂]����𝑀𝑀�
 (blue line), 𝑇𝑇

′𝑀𝑀′

𝑇𝑇�𝑀𝑀�
 (cyan line), and [𝑂𝑂]′𝑇𝑇′

[𝑂𝑂]����𝑇𝑇�
 660 

(magenta line) at 43.75° N. 661 
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