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Abstract

For retrieval of atomic oxygen and atomic hydrogen via ozone observations in the extended mesopause region (�70–100 km) under
nighttime conditions, an assumption on photochemical equilibrium of ozone is often used in research. In this work, an assumption on
chemical equilibrium of ozone near mesopause region during nighttime is proofed. We examine 3D chemistry-transport model (CTM)
annual calculations and determine the ratio between the correct (modeled) distributions of the O3 density and its equilibrium values
depending on the altitude, latitude, and season.

The results show that the retrieval of atomic oxygen and atomic hydrogen distributions using an assumption on ozone chemical equi-
librium may lead to large errors below �81–87 km. We give simple and clear semi-empirical criterion for practical utilization of the lower
boundary of the area with ozone’s chemical equilibrium near mesopause.
� 2017 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

It is hard to deny that atomic hydrogen and atomic oxy-
gen are essential minor chemical constituents in
mesosphere-lower thermosphere region because they are
chemically active, and involved in thermal and radiative
processes of the MLT. Furthermore, they take part in the
formation of emission layers. The relation of atomic oxy-
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gen with transient luminous events was found recently
(Wu et al., 2017). Unfortunately, in situ rocket-borne mea-
surements of O and H are very limited (e.g., Hedin et al.,
2009). More commonly, an atomic oxygen and atomic
hydrogen distributions are investigated in the MLT by
satellite measurements (Russell and Lowe, 2003;
Mlynczak et al., 2007, 2013a, 2013b, 2014; Smith et al.,
2010; Siskind et al., 2008, 2015). These observations are
based on two assumptions concerning: (1) ozone’s chemical
equilibrium (hereafter OCE) and (2) the main processes
entered into the balance equation.

The single reaction of photochemical ozone formation is
the three-body reaction of molecular and atomic oxygens
O2 + O + M ? O3 + M, where M is the air number den-
sity. Without a doubt, the main loss process of ozone near
quilibrium in the extended mesopause under the nighttime conditions.
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mesopause region during the night is the reaction with
atomic hydrogen, O3 + H ? O2 + OH. The reaction of
ozone with atomic oxygen amounts to less than 10% of
the total ozone loss and can be ignored (Smith et al.,
2008). All other common for mesopause ozone balance
reactions are even less important. In mesopause region
ozone additionally reacts with OH, HO2, NO, and NO2.
Assuming typical mesopause temperature 298 K one may
assess corresponding reaction rates, which are 7.3 � 10�14,
1.9 � 10�15, 1.8 � 10�14, and 3.2 � 10�17 [cm3 molecule�1

s�1], respectively (Table A.3.1, Brasseur and Solomon,
2005). Multiplying by maximal concentrations at 80–100
km (Table A.6.2, Brasseur and Solomon, 2005) we obtain
loss rates � 2.3 � 10�7, 2.3 � 10�9, 5.9 � 10�7, and 3.5 �
10�12 [s�1], respectively, which are several orders lower
than corresponding loss rate of the main reaction 7 � 10�3

[s�1]. Losses by reactions with Cl, Br, F are even less
important due to lack of these chemical compounds in
the mesopause (Shimazaki, 1985; Brasseur and Solomon,
2005). Thus, the second assumption is roughly valid for
nighttime conditions. An applicability of the OCE assump-
tion, for nighttime conditions is not as obvious, although it
is of importance for other applications.

For several decades, OCE assumption has been used to
study hydroxyl emission mechanisms, morphology, and
variability in the extended mesopause region (Marsh
et al., 2006; Xu et al., 2010, 2012; Kowalewski et al.,
2014). Kulikov et al. (2006, 2009) proposed methods for
the simultaneous retrieval of O, H, HO2 and H2O by joint
OH and O3 satellite measurements, where OCE assumption
has been utilized. Mlynczak and Solomon (1991, 1993) and
Mlynczak et al. (2013b) used this assumption to derive
exothermic chemical heat. The OCE assumption was
applied in order to study the mesospheric OH* layer
response to gravity waves (Swenson and Gardner, 1998).
It is also applied in ultimately theoretical works (e.g.
Grygalashvyly et al., 2014; Grygalashvyly, 2015). OCE
assumption is used to derive the dependence of excited
hydroxyl layer number density and altitude of atomic oxy-
gen and temperature. Sonnemann et al. (2015), used it to
analyze annual variations of OH* layer. Very often this
assumption is applied implicitly, when authors are equating
the nighttime loss of ozone in reaction with atomic hydro-
gen and production of ozone by 3-body reaction of molec-
ular and atomic oxygen (e.g., Nikoukar et al., 2007).
However, except for several particular cases with rather
narrow ranges of coordinates and local times (e.g., Smith
and Marsh, 2005), the feasibility of these assumptions
depending on time and coordinates has not been proved
hitherto. Moreover, current knowledge regarding the
chemistry of the MLT suggests that the lower boundary
of applicability of the OCE can take place higher than
80 km. First, at 80 km, the concentration of H possesses
considerable diurnal photochemical variations and during
the night can decrease by approximately one order which
leads to the corresponding growth of the characteristic time
of ozone (Allen et al., 1984). Second, in the height range
Please cite this article in press as: Belikovich, M.V., et al. Ozone chemical e
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between 80 and 90 km, the photochemical system, and con-
sequently ozone evolution, is essentially nonlinear
(Konovalov and Feigin, 2000). In particular, in a nighttime
phase space of the system, there are areas where character-
istic ozone evolution time can be comparable to photo-
chemical lifetime of ozone, which is equal to the invers
loss term of ozone (Shimazaki, 1985; Brasseur and
Solomon, 2005). From the physical point of view, obvi-
ously in such a case the condition of OCE will not be sat-
isfied, and its application for the estimation of O and H via
ozone and airglow measurements can lead to larger errors
up to several orders. In this current paper we perform a
global study of the OCE for the nighttime extended meso-
pause region based on 3D CTM. We calculate the relation-
ship of ‘‘true” O3 concentration to local equilibrium values
O3eq depending on height, latitude, and season. The paper
is structured as follows: in the next chapter, the model is
described; chapter three presents the results and discussion
of our calculations; followed by concluding remarks in the
last chapter.

2. Model and calculations

We use for our calculations the global 3D chemistry-
transport model (CTM) of the middle atmosphere designed
at the Leibniz Institute of Atmospheric Physics (IAP) par-
ticularly to study the spatio-temporal phenomena in the
MLT region with focus on the extended mesopause region.
Model calculates 3D advective and vertical diffusive trans-
port (turbulent and molecular). The grid-point model
extends from the ground up to 150 km (118 pressure-
height levels). The horizontal resolution amounts to
5.625� latitudinally and 5.625� longitudinally. The chem-
istry module consists of 19 constituents, 49 chemical reac-
tions and 14 photo-dissociation reactions. The chemical
part has been described in numerous papers (e.g.,
Sonnemann et al., 1998; Körner and Sonnemann, 2001;
Grygalashvyly et al., 2009, 2011, 2012). The CTM was val-
idated with measurements, and particularly for ozone, in a
number of papers (Hartogh et al., 2004, 2011; Sonnemann
et al., 2006a, 2006b, 2007). Three-dimensional fields of the
temperature and winds are used from the Canadian Middle
Atmosphere Model (CMAM) (de Grandpre et al., 2000;
Fomichev et al., 2002; Scinocca et al., 2008). We utilize
dynamics and temperature of extended version of
CMAM30-SD for year 2000 (http://climate-mod-
elling.canada.ca/climatemodeldata/cmam/output/
CMAM�Ext/CMAM30-SD/6hr/atmos/index.shtml).

We calculate the annual variation of the spatio-temporal
distributions of the ratio

R ¼ O3=O3 eq ð1Þ
where O3 are the ozone values calculated by the model, and
O3 eq are the values of ozone in photochemical equilibrium.
The values of O3 eq are calculated as a ratio of production to
the reduced loss terms, which take into account all main
sources and sinks:
quilibrium in the extended mesopause under the nighttime conditions.
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O3eq ¼ k9 �O �O2 �M
k12 �H þ k10 �Oþ k13 �OH þ k16 �HO2 þ k7 �NOþ k8 �NO2

;

ð2Þ
where ki are the corresponding reaction rates (the reactions
noted in the paper are given in Table 1), and 3D distribu-
tions of all other minor chemical constituents are taken
from model calculations. Then we calculate

R ¼ N�1
PN

i¼1Ri (N – number of grid points through the
nights for one month, and it is different for each latitude
and height) the night time averaged monthly mean of R

and standard deviation req ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1ðRi � RÞ2=N
q

of this

ratio for each month. Note that for retrieving O and H
by SABER measurements, data were used at v > 95�
(e.g., Mlynczak et al., 2014). Similarly, in order to remove
transition regions of sunset and sunrise, we take into
account local time for which the solar zenith angle v >
100�. The works based on satellite measurements most
often show the results on so-called pseudo altitudes. Fol-
lowing these, in the present paper we represent our results
on pressure height (or so-called pseudo altitude)
z� ¼ �H lnðp=p0Þ, where H = 7 km is the scale height, p is
the pressure, and p0 = 1013 hPa is the pressure at the
surface.

3. Results and discussion

Fig. 1 shows height–latitude cross-sections for the ratio
R (Eq. (1)) for each month. The dashed area corresponds
to v < 100�. The white area represents the ratio out of
interval [0.5, 1.5]. We assume that the OCE is valid if
jointly are satisfied the following imbalances:

100% � jR� 1j 6 10%;

100% � req 6 10%:

�
ð3Þ

In other words, two criteria have to be jointly satisfied:
(1) R lies between 0.9 and 1.1; (2) req is less than 0.1. Black
solid lines in Fig. 1 mark the border of equilibrium zeq – the
lower border of the area where, according to (3), local val-
ues of ozone are expected to be in agreement with their
equilibrium values. The magenta dashed line depicts peak
of hydroxyl concentration. Note, that it follows well the
seasonal-latitudinal variation of zeq, 3–4 km beneath. This
fact will be discussed below. Local irregularities beneath
main zeq are excluded. The ozone in the photochemical
Table 1
List of reactions.

(1) O + OH +M?HO2 + M (10) O + O3 ? 2O2

(2) H + HO2 ? O2 + H2 (11) O + O +M? O2 +M
(3) OH + HO2 ? O2 + H2O (12) O3 + H ? O2 + OH
(4) O + OH? O2 + H (13) O3 + OH ? O2 + HO2

(5) O + HO2 ? O2 + OH (14) H + HO2 ? 2OH
(6) O2 + H +M?HO2 +M (15) OH + OH? O + H2O
(7) O3 + NO ?NO2 + O2 (16) O3 + HO2 ? 2O2 + OH
(8) O3 + NO2 ? O2 + NO3 (17) OH + H+M?H2O + M
(9) O + O2 + M? O3 +M (18) H + HO2 ?H2O + O
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equilibrium is at the height zeq � z�100 km. The border
of equilibrium zeq depends on the season and latitude and
varies in the interval �82–92 km. During the summer
months at middle and high latitudes zeq amounts to �90
km. The lowest altitudes of the border of equilibrium
amount to �82 km at low and middle latitudes. In the
spring and fall seasons, the highest altitudes of zeq are
placed at high southern and northern latitudes, respec-
tively. During winter months (e.g., January and February)
ozone at high northern latitudes strongly deviated from its
equilibrium especially during major and minor Sudden
Stratospheric Warming (SSW) events. Generally,
seasonal-latitudinal behavior of ozone and, consequently,
R is determined by residual circulation and corresponding
fluxes of atomic oxygen (downward in winter and upward
in summer) and can be different from year to year.

Fig. 2 illustrates standard deviation of calculated R
from its mean value, calculated at every latitude-altitude
grid point. Generally, relative deviation of R ratio from
one (Fig. 1) and standard deviation shown in Fig. 2 are cor-
related, as expected, i.e., the closer the ratio R is to 1, the
smaller corresponding standard deviation of calculated R
from its mean values.

The calculations show that the lower boundary of the
area, where OCE is well satisfied, depends on latitude
and annual variation. Thus, for the practical application
of OCE assumption, it is necessary either to take into con-
sideration only the area of heights over �90 km or to find
the criterion allowing on the basis of initial experimental
data to identify a correctness of OCE locally.

If sO3
< sO3 eq , where sO3

is photochemical lifetime of

ozone and sO3 eq is characteristic time of O3 eq, then ozone

concentration follows the changes of its equilibrium (i.e.,
O3=O3 eq ffi 1). If sO3

> sO3 eq , the concentration of ozone

lags behind the asymptotic equilibrium O3 eq; thus, local dif-
ferences between O3 and O3 eq may reach larger values. At
altitudes z, slightly higher than zeq (z > zeq), it is almost
always valid sO3

< sO3 eq , and at noticeable higher altitudes

than threshold height (z � zeq), it is valid sO3
	 sO3 eq .

Therefore, as a first approximation, weak inequality can
be used (sO3

< sO3 eq ).

As noted above, OH concentration peak mirrors the
lower boundary of the O3 equilibrium, at 3–4 km beneath.
It is well known that OH* layer is placed 3–4 km higher
than the OH-layer during the night (Sonnemann et al.,
2015). Thus, for the first approximation peak of excited
hydroxyl emission (which is observed by satellites) may
serve as a marker for the lower boundary of region where
O3 is in chemical equilibrium. The ozone is in chemical
equilibrium at the exited hydroxyl layer altitude and above,
while the equilibrium is violated below this border.

Hydroxyl and excited hydroxyl layers possess essential
latitudinal and seasonal variations resulting from the inter-
action of the active minor chemical constituents and the
variation of their principle sources, i.e., water vapor and
ozone. The variations of temperature, eddy diffusion, wave,
quilibrium in the extended mesopause under the nighttime conditions.
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Fig. 1. Night time averaged monthly mean ratio O3=O3eq distributions. Black solid lines mark the border of equilibrium zeq, the magenta dashed line
depicts peak of OH concentration.
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and tidal activity also interplay with them. The water vapor
dissociation is the principle net production term of odd
hydrogens. The oxidation of molecular hydrogen and
water vapor by O(1D) produced by the ozone dissociation
are of no importance in the mesopause region during the
Please cite this article in press as: Belikovich, M.V., et al. Ozone chemical e
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night. The vertical fluxes of O and H, however, play an
important role in the chemistry of the mesopause region.
The main production terms determining concentrations
of hydroxyl are the reactions T12 and to a lesser degree,
the reaction T5 and T16. The main destruction of hydroxyl
quilibrium in the extended mesopause under the nighttime conditions.
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Fig. 2. Standard deviation req distributions of night time averaged monthly mean ratio O3=O3 eq.
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takes place by the T4. The chief reactions, determining the
odd oxygen destroying catalytic cycle, are T12, T4, fol-
lowed by the net reaction O + O3 ? 2 O2. Thus, OH con-
centration is, approximately

½OH
 � k12½H
½O3
=k4½O
; ð4Þ
Please cite this article in press as: Belikovich, M.V., et al. Ozone chemical e
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where k12 and k4 are the corresponding reaction rates. Con-
sequently, the Eq. (4) illustrates that the OH concentration
depends on the concentration of the other important chem-
ical active constituents, which are H, O, and O3. The chem-
ical lifetime of hydroxyl is extremely short (in the order of
quilibrium in the extended mesopause under the nighttime conditions.
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seconds or even shorter), so that the hydroxyl is in a
dynamic steady-state equilibrium following immediately
the changing concentration of the involved constituents.

On the other hand, the reaction of ozone with atomic
hydrogen is the most important ozone loss term around
mesopause during the nighttime and primary production
source for excited hydroxyl. Hence, it is not surprising that
the strongest destruction of ozone occurs at the region of
the OH* layer. Thus, for practical usage the emission layer
of excited hydroxyl may serve as the lower border of area
with ozone under equilibrium condition. More detailed
analyses of the application of these criteria need consider-
ations of each particular measurement.

4. Conclusion

In the present work, the correctness of assumption of
ozone chemical equilibrium in the extended mesopause
region (70–100 km) during nighttime hours based on the
results of 3D modeling was proved. We find that ozone
concentrations are in photochemical equilibrium above
82–92 km depending on season and latitude. The ozone
strongly deviated from its equilibrium beneath this border.
We found by 3D simulation that the excited hydroxyl layer
well repeat variability of the lower border of the ozone
equilibrium area. Hence, peak of OH* emission can be uti-
lized for satellite observations as the boundary, which
demarcates the area where OCE assumption is valid.
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