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Abstract In this study, numerical simulations of planetary-scale waves (PSWs), generated in the
troposphere, were performed for altitudes from the Earth’s surface up to 300 km. The influence of
thermospheric effects of solar activity (SA) on the amplitudes and phases of westward traveling PSWs with
zonal wave numbers 1 and 2 and periods 4–16 days propagating from the troposphere was simulated. Such
simulations for a large number of PSWmodes in the thermosphere were made for the first time. The effects of
SA changes at altitudes above 100 kmwere involved in the general circulationmodel MUAM. The ionospheric
conductivities for minimum and maximum SA levels were included into the MUAM. The simulation results
were averaged over two ensembles of model runs with different PSW phases for conditions corresponding to
the high and low SA levels for January–February. PSW atmospheric refractivity index and Eliassen-Palm flux
were calculated. They correspond to simulated changes in PSW amplitudes. Changes in the zonal velocity
and temperature caused by the SA variations canmodify spatial distributions of the westward traveling PSWs.
Wave amplitudes significantly (up to 100%) decrease at the thermospheric heights under high SA, which
is accompanied by decreasing vertical component of the Eliassen-Palm flux. The 7-, 10-, and 16-day PSWs
could have larger partial reflection and worse propagation conditions than the 4- and 5-day waves in the
Southern Hemisphere under the high SA. At altitudes below 100 km, minor differences in zonal velocity and
PSW amplitudes between high and low SA are found.

1. Introduction

Planetary-scale waves (PSWs) in the atmosphere are global-scale oscillations in the thermosphere with
periods of several days. These waves can be generated in the troposphere and stratosphere, and then they
can propagate to the upper atmosphere. In the thermosphere, PSWs can produce frequently observed
oscillations (e.g., Forbes et al., 2002; Forbes & Zhang, 2015; Pancheva et al., 2010). The main sources of
PSWs could be topographic forcing, land-sea heating contrast, large-scale meteorological disturbances,
etc. PSWs can contribute to the energy transfer between different atmospheric layers and play significant role
in the formation of the general circulation of themiddle and upper atmosphere (Holton, 1975). The interest in
more accurate studies of the dynamical and thermal effects produced by PSWs at different atmospheric
layers is constantly increasing.

Planetary-scale oscillations with identical or similar periods coexist regularly in the middle atmosphere and
ionosphere (Chang et al., 2011; Pancheva & Mukhtarov, 2012). In particular, PSWs were detected during
the analysis of observations of nighttime emissions at F layer heights (Takahashi et al., 2005). PSWs were also
registered with Fabry-Perot spectrometer SATI (Lopez-Gonzalez et al., 2009) observing OH and O2 emissions
at altitudes 80–100 km. Registered PSWs were divided into the groups corresponding to 2-, 5-, 10-, and
16-day periods. Borries and Hoffmann (2010) showed the existence of strong planetary wave-type oscillations
in the ionosphere by analyzing themaps of total electron content. They found that characteristics of standing
and propagating waves in the ionosphere are similar to stratospheric planetary waves. Large-scale wave
structures were detected from an analysis of the zonal variability of the nightglow hydroxyl emission
(Zaragoza & Taylor, 2001) and from observations of thermospheric winds in the ionosphere by Fabry-Perot
interferometers (Liu et al., 2014). Laštovicka (2006) assumed that planetary waves could propagate from
the middle atmosphere to the ionospheric heights only indirectly, through secondary PSW excitation by
dissipating planetary wave (PW) modulated tides (Meyer, 1999; Yamazaki & Richmond, 2013), or through
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vertical plasma drifts (Liu & Richmond, 2013). At the same time, Takahashi et al. (2007) supposed that PSWs
with periods of 3–4 days may propagate directly from the stratosphere to the heights of the ionosphere.

Numerical simulations of planetary waves having different periods and zonal wave numbers have been
repeatedly performed. Among the recent studies, one should mention papers by Smith (2003), Liu et al.
(2004), Akmaev (2011), Chang et al. (2014), Wang et al. (2017), etc. The global atmospheric circulation models
extended to the ionospheric heights were also developed (e.g., Liu et al., 2018; Qian et al., 2013). Hoffmann
and Jacobi (2006) found PSW manifestations at the midlatitude ionospheric heights of the Northern
Hemisphere. They used maps of the total electron content obtained from the GPS and GLONASS satellites
for the space weather forecasting. PSWs at ionospheric heights were also registered using the data of the
ionosonde network at high latitudes of the Northern Hemisphere (Stray & Espy, 2018; Zhu et al., 2017).

Conditions of PSW generation and propagation may depend on cyclic changes of the solar activity (SA), for
example, Geller and Alpert (1980) and Arnold and Robinson (1998). These changes can affect the temperature
and circulation, and alter PSW propagation conditions by redistributing the incoming solar energy at various
atmospheric layers (Chanin, 2006). Numerical simulations of SA effects on the temperature and zonal wind
were performed by Krivolutsky et al. (2015) at altitudes up to 135 km and by Gan et al. (2017) in the
mesosphere. Remote temperature measurements at mesopause altitudes showed the presence of PSWs with
periods of 2–10 days, correlating with the 22-year Hale cycle (Hoppner & Bittner, 2007). Dependence of PSW
activity on the solar flux was also showed in the analysis of long-termwind observations at mesosphere-lower
thermosphere heights (Jacobi et al., 2008).

In this study, we use the middle and upper atmosphere model MUAM (Pogoreltsev et al., 2007) to perform
numerical simulations of the general circulation and PSWs at altitudes from the Earth’s surface up to about
300 km. Recently this model was used to investigate the influence of SA on the propagation of stationary
planetary waves in the upper atmosphere (Koval et al., 2018). It was shown, that under high SA, the zonal
wind speed increases at altitudes above 150 km and decreases in the lower layers. At high SA, the amplitudes
of stationary planetary waves decrease above 120 km.

In the current study, we continue this analysis and consider impacts of thermospheric SA changes on the
propagation conditions of the westward traveling PSWs with periods 4–16 days generated in the
troposphere. Such PSWs correspond to the normal atmospheric modes considered in the theory of
atmospheric planetary waves (Longuet-Higgins, 1968). We did not find information about similar previous
simulations for a wide set of westward traveling PSW modes. The SA changes were specified in the MUAM
model only at the altitudes higher than 100 km (see section 2). Below 100 km, identical conditions
corresponding to the medium level of SA were specified. This method allows us to single out the
thermospheric influence on the dynamical processes in the atmosphere.

2. The Numerical Model and Solar Activity Accounting

For PSW numerical experiments, the model MUAM (Pogoreltsev, 2007; Pogoreltsev et al., 2007) was used. The
model is a modification of the Cologne Model of the Middle Atmosphere-Leipzig Institute for Meteorology
(COMMA-LIM; Fröhlich et al., 2003). The MUAM solves the standard set of hydrostatic equations in spherical
coordinates described by Gavrilov et al. (2005). Simulations are made for the altitude range from 0 to 300 km,
but the weather changes in the troposphere are not modeled. The main simulated parameters include zonal,
meridional and vertical velocity components, geopotential, and temperature. The Machuk-Strang splitting
procedure (Strang, 1968) is applied, and the scheme proposed by Matsuno (1966) is used for the time
integration. To provide the solution stability, a Fourier filter is applied, which limit the zonal resolution to
approximately 5°. In the current version of the MUAM, the horizontal grid steps are 5 × 5.625° along the
latitude and longitude, respectively. The vertical grid is the log-pressure coordinate z = H*ln (p0/p), where
p0 is the surface pressure and H is the average density scale height. The grid has 56 nodes covering the
altitudes from the Earth’s surface to about 300 km. The integration time step is 225 s.

The lower boundary conditions are specified at the isobaric level of 1,000 mb in the form of zonal mean
climatological distributions of geopotential height and temperature, which are obtained from the JRA-55
(Japanese 55-year Reanalysis) database (Kobayashi et al., 2015) for January by averaging over the years
2005–2014. The MUAM equation for temperature contains an additional term, which is proportional to the
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difference between simulated and climatological zonal mean temperature in the tropostratosphere. The
proportionality constant corresponds to about 5-day relaxation of the simulated temperature to the
climatological one. This allows obtaining more realistic locations and strengths of jet streams in the tropo-
sphere. The MUAM involves three-dimensional distributions of ozone in the middle atmosphere, which
include averaged over years 1996–2005 climatological inhomogeneities (Suvorova & Pogoreltsev, 2011).

The MUAM involves dynamical and thermal effects of gravity waves (GWs), which are required for the proper
simulations of the middle and upper atmosphere (Andrews et al., 1987). These GWs have scales smaller than
theMUAMgrid spacing and require parameterization. TheMUAM uses three such parameterizations. For GWs
having small phase speeds (5–30 m/s) a parameterization similar to the Lindzen’s one (Lindzen, 1981) is used.
For faster waves with phase speeds of 30–125 m/s, which are important in the thermosphere, a version of the
spectral parameterization (Yigit & Medvedev, 2009) is applied. The parameterization uses 15 GW spectral
components uniformly distributed within the period range from 40 min to 3 hr. The MUAM also involves
the parameterization of stationary mountain waves developed and described by Gavrilov and Koval (2013).

Specifying climatological temperature and wind near the lower boundary (see above) generates stationary
planetary waves in the MUAM, which were considered by Koval et al. (2018). Besides these waves, the model
can simulate travelingmodes (Pogoreltsev et al., 2014). Because the MUAM does not adequately replicate the
weather in the troposphere, the sources of westward propagating atmospheric normal modes (NMs) in the
troposphere were parameterized by inclusion of additional terms to the MUAM equation of heat balance,
which involve sets of sinusoidal components versus time with periods corresponding NMs having zonal wave
numbers s = 1 and s = 2. Latitude structures of these terms correspond to the Hough functions of respective
NMs calculated with the algorithm by Swarztrauber and Kasahara (1985). NM periods analyzed in this study
are equal to the resonant periods of reactions of the atmosphere on the wave forcing at low altitudes, which
were determined using a linear model of planetary waves by Pogoreltsev (1999). The present MUAM version
takes into account the NMs marked as (1,1), (1,2), (1,3), (2,1), and (2,2) in the classification putted forward by
Longuet-Higgins (1968), which, respectively, have periods of 120, 220, 360, 90, and 170 hrs. In this sensitivity
consideration, we applied the amplitudes of NM heat sources at altitude of 10 km. These heating sources give
simulated NM amplitudes comparable with the observed ones in the stratosphere (Pogoreltsev et al., 2009).

As the original COMMA-LIM (Fröhlich et al., 2003), MUAM contains radiation schemes calculating solar
heating and infrared cooling rates of the most prominent absorbers and emitters in the middle atmosphere,
such as NO, O, O2, O3, H2O, and CO2. The model involves parameterizations of radiation heating the
atmosphere in the ultraviolet and visible spectral band from 125 to 700 nm and cooling in the 8, 9.6.14,
and 15 mkm infrared bands accounting local thermodynamic equilibrium (LTE) disturbances at high alti-
tudes. Also, model includes thermal dissipation from turbulent mixing, ion drag, and molecular heat conduc-
tion. Additionally to the radiative scheme used in the original COMMA-LIM version, extreme ultraviolet
heating parameterization is included in the thermosphere. Solar fluxes and absorption coefficients for each
extreme ultraviolet spectral interval and each constituent were calculated using the model proposed by
Richards et al. (1994).

The F10.7 flux changes during the 11-year solar activity cycle (e.g., Tapping, 1987). Low and high levels of SA
are specified in the MUAM as it was described by Koval et al. (2018). The MUAM radiative block takes into
account the dependence of solar radiation on the solar radio flux F10.7 at the wavelength of 10.7 cm. The
F10.7 flux, corresponding to minimum, medium, and maximum SA according to the analysis of the
observation data during the last six solar cycles (Royal Observatory of Belgium (ROB), 2013), was set as 70,
130, and 220 sfu (1 sfu = 10�22 W/(m2 Hz)), respectively. As far as we focused only on the thermospheric
influence on the global circulation, different F10.7 values were set in the MUAM at altitudes above 100 km.
Below 100 km, the constant value of F10.7 = 130 sfu, corresponding to the medium SA level, was set. This
approach was applied to isolate the thermospheric influence on the dynamical processes in the atmosphere.

The initial condition for numerical simulations is a windless state with the temperature and geopotential
distributions corresponding to the JRA-55 reanalysis database (Kobayashi et al., 2015). For the MUAM
adjustment, geopotential heights at the lower boundary are set to be constant in the first 30 model days.
Then, the observed geopotential variations corresponding to the JRA-55 database are specified. Before the
model day of 121, the MUAM involves the daily mean heating rates only. The tests described by
Pogoreltsev (2007) showed that described procedures are enough for the model to reach a steady state
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regime at the end of this time interval. After the 121st day, daily variations of heating, parameterization of the
NMs, and an additional prognostic equation for the geopotential at the lower boundary are included. This
prognostic equation needs to satisfy the lower boundary condition for the waves generated by internal
sources (Pogoreltsev et al., 2007, 2009). Starting from the 330th model day, seasonal changes in solar heating
are triggered and the next 60 days are considered as characteristic for January–February.

The results of a MUAM run may depend on particular phases of simulated NMs. In addition, relatively small
variations in the initial conditions can have a substantial influence on the evolution of the simulated fields
(e.g., Gray et al., 2003; Yoden, 1990). Both NM phases and initial perturbations can be accounted by changing
the day of inclusion of atmospheric NMs and prognostic equation for geopotential height at the lower
boundary mentioned above during the initial MUAM adjustment. In the present study, we simulated
ensembles of 12 MUAM runs with the day of NM source activating varying between 120 and 131 with the
step of 1 day.

To include the influence of charged particles in the ionosphere on the neutral gas dynamics, conductivities of
the ionosphere and their longitudinal, latitudinal, and temporal dependences were calculated (Dickinson
et al., 1975; Shevchuk et al., 2018). Zonal and meridional coefficients of the ion drag Iλ, Iφ, and geomagnetic
torque M are calculated using the formulae

Iλ ¼ � σ1H2
0

ρc2
; Iφ ¼ � σ1H2

z

ρc2
; M ¼ σ2HzH0

ρc2
; (1)

where Hz and H0 are the vertical component and module of the vector of magnetic field intensity, respec-
tively; ρ is the density of the neutral atmosphere; c is the light speed; σ2 and σ1 are the Hall and Pedersen
ionospheric conductivities, respectively. They are calculated using formulae (e.g., Pogoreltsev, 1996)

σ1 ¼ eN μe
1 þ μi

1

� �
; σ2 ¼ eN μe

2 � μi
2

� �
; (2)

where N and e are the number electron density and the electron charge, respectively, μi
1;μ

i
2;μ

e
1;μ

e
2 are,

respectively, the prea-mobility of ions and electrons.

Parameters of the ionosphere and thermosphere are taken from the semiempirical models of the ionosphere
IRI-Plas (Gulyaeva et al., 2002) and atmosphere NRLMSISE-00 (Picone et al., 2002). The ion drag and geomag-
netic torque (1) with their diurnal variations for January were included into the MUAM at 23 altitude grid
nodes above 100 km at all longitudes and latitudes.

In order to analyze the results of numerical simulations of PSW amplitudes, the latitude-altitude distributions
of themean zonal quasi-geostrophic complex refractivity index squared (RI2) were calculated by the formulae
(1) in Gavrilov et al. (2015). According to Dickinson (1968) and Matsuno (1970), PSWs should propagate in
regions of the atmosphere where RI2 is positive and becomes evanescent at negative RI2 values, so areas
of the positive RI2 are considered as the waveguides. The boundaries of these waveguides are located
frequently near PSW critical levels, where zonal wind is approximately equal to PSW horizontal phase speed.

Considering changes in RI2, one can study the relative importance of the strength, shear, and curvature of the
zonal mean wind influencing the trajectories of PSW propagation. For further diagnostics of the PSW
propagation, the Eliassen-Palm flux (EP-flux) vector was calculated by the formulae (2) in Gavrilov et al.
(2015). An upward direction of EP-flux vector relates to the northward wave heat flux, while southward
EP-flux vector relates to the northward PSW momentum flux. The divergence of the EP-flux shows the net
drag of the zonal mean flow by the PSWs. In case of steady, low-frequency waves, their group velocity is
parallel to the EP-flux vector. Besides this, the EP-flux vector is curved up the gradient of RI2 and particularly,
is directed along the regions of positive RI2 (Karoly and Hoskins, 1982). Thus, RI2 and EP-flux vector could be
useful tools for analyzing and visualizing the PSW propagation trajectories in the latitude-altitude plane.

3. Results of Simulation

In order to distinguish changes in the thermosphere due to SA and their effects on PSW amplitudes, two
12-member ensembles of model runs with conditions corresponding to the high and low SA
(see section 2) were calculated. Different levels of SA were specified in the MUAM at altitudes above
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100 km similar to the study by Koval et al. (2018). Below this altitude, medium SA level was set in the MUAM
for all model runs. Wind, temperature, and geopotential fields were simulated for January–February. The
longitude-time Fourier transform of the MUAM solutions with the least squares fitting of the hydrodynamic
fields (geopotential height, wind, and temperature) estimated the PSW amplitudes and phases.

We analyzed the average over 12 model runs differences in amplitudes of PSWs corresponding to
atmospheric NMs with zonal wave numbers s = 1–2 and periods of 4–16 days, caused by SA changes in
the thermosphere. Averaging over 12 model runs and over 2 months allows us to improve statistical
confidence and diminish effects of the sudden stratospheric warming events, which could occur at different
times in individual MUAM runs.

3.1. PSW Amplitudes and Phases

Latitude-altitude dependences of the zonal mean wind, temperature, and meridional gradient of
temperature are averaged over 12 MUAM runs and over January–February; also, their differences between
high and low SA are presented in the supporting information Figures S1–S3. Simulated temperature
generally match to semiempirical model of temperature NRLMSISE-00 (Picone et al., 2002) for different SA
levels as shown in Figure S4 in the supporting information. Zonal circulation is consistent with semiempirical
horizontal wind model HWM07 (Drob et al., 2008). At heights above 160–180 km, the zonal wind is smaller at
low SA in both hemispheres. Between 180 and 140 km the zonal velocity is larger at high SA in the Southern
Hemisphere. This is associated with corresponding differences of the meridional temperature gradient in the
right panel of supporting information Figure S4.

At heights below 100 km in Figure S1, Koval et al. (2018) found minor differences in zonal velocity between
high and low SA. For instance, the differences in the zonal mean velocity may become 3m/s (about 6%) in the
midlatitude Northern Hemisphere at heights 60–100 km. Estimations of statistical significance with paired
Student’s t test (e.g., Rice, 2006) using 12 × 720 × 64 = 552,960 pairs of respective values for the low and high
SA (obtained from 12 model runs, 720 two-hour outputs at 64 longitude grid nodes) gave 99% statistical
significance of the mentioned above mean zonal wind differences at heights below 100 km (Koval et al.,
2018). This gives evidences that changes in thermospheric parameters produced by SA variations at heights
above 100 km may affect the global circulation at altitudes of the middle atmosphere.

Figure 1 reveals simulated latitude-height distributions of PSW amplitudes averaged over January–February
for two 12-member ensembles of model runs under high and low SA; also, their differences due to SA
changes in the thermosphere. Here and in the next figures, the globally averaged geopotential height has
been used as vertical coordinate. In Figure 1 one can see that the main maxima of 7-, 10-, and 16-day
PSWs exist at the middle and high latitudes of the Northern (winter) Hemisphere. Amplitudes of 4 and 5 days
have maxima also in the Southern (summer) Hemisphere, which are stronger at low SA at heights above
100 km, especially for the 5-day PSW (see the middle panel of Figure 1b). This can be connected with the
largest westward phase speed of the traveling 5-day NM in the middle atmosphere (e.g., Gavrilov et al., 2015).

Differences in PSW amplitudes between high and low levels of SA are shown in the right panels of Figure 1.
The paired Student’s t test (Rice, 2006) was applied to the ensembles of 12 pairs of simulated PSW amplitudes
for the high and low SA levels at each latitude and altitude location. The areas where t test gave smaller than
95% statistical confidence of nonzero amplitude differences are shaded with lines in the right panels of
Figure 1. One can see that statistically significant differences can exist at heights above 100–150 km.

Respective differences in the zonal mean velocity and temperature fields caused by changes from high to low
SA can be found in the supporting information Figures S1 and S2. Changes in general circulation can modify
spatial distributions of PSW amplitudes. Under the high SA, PSW amplitudes are generally (up to 100%)
smaller at thermospheric heights. The most significant decrease at high SA for the 16-day PSW amplitude
can be seen in the right panel of Figure 1e at heights above 200 km. The eastward direction of atmospheric
circulation during the winter season in the Northern Hemisphere contributes to better propagation of
planetary waves (e.g., Charney & Drazin, 1961). In the middle and high latitudes of the Southern
Hemisphere, largest negative differences one can see in the right panel of Figure 1b at altitudes
above 150 km.

Magnitudes and structure of simulated 5-day PSWs are in general agreement with those obtained from
TIMED/SABER temperature measurements at altitudes of the middle atmosphere, mesosphere and lower
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Figure 1. Amplitudes of the geopotential height variations (in g.P.m.) caused by the westward traveling PSWs with periods
4, 5, 7, 10, and 16 days (a–e, respectively) under the high SA (left), low SA (middle), and their differences (right) averaged
over 12-member ensembles and over January–February. Areas shaded with lines show regions with statistical confi-
dence of respective differences smaller than of 95% according to paired Student’s t test.
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thermosphere (Pancheva et al., 2010; Riggin et al., 2006). Simulated 10-day PSW corresponds to the
Broadband Emission Radiometry temperature measurements at altitudes below 100 km and latitudes
between �50°S and 50°N averaged over the years 2002–2013 (Forbes & Zhang, 2015). The existence of the
simulated PSW modes with the same periods in the ionosphere was confirmed by many observations of
the total electron content at different latitudes (e.g., Borries et al., 2007; Pedatella & Forbes, 2009).

At altitudes below 100 km, the right panels of Figure 1 demonstrate mainly positive differences
corresponding to larger PSW amplitudes under high SA. In the considered model, a possible mechanism of
amplitude variations in the middle atmosphere could be partial reflection of upward propagating PSWs at
heights of the lower thermosphere due to substantial increase in the thermospheric temperature at high
SA (see Figure S2 in THE supporting information). Similar effects were also found in previous studies
(e.g., Lu et al., 2017). Stronger reflection could cause PSW amplitude decreases under the high SA in the
thermosphere (see above). However, the statistical confidence of the right panels of Figure 1 is not adequate
at altitudes below 100 km. Further studies with larger number of model runs are required for better statistical
confidence of PSW amplitude changes in the middle atmosphere caused by SA variations.

Phases of the PSWs were also analyzed. Strong phase shifts exist at altitudes of 80–100 km for 5-, 10-, and
16-day PSWs having the zonal wave number 1, especially at low SA. This could be connected with possible
influence of plasma drift on PSW propagation into the lower ionosphere and on the wave phases
(Laštovicka, 2006). Temporal time lag in PSWs propagating into the lower ionosphere up to several days were
found by Pancheva et al. (1994) and by Stray and Espy (2018).

3.2. PSW Refractivity Index and Eliassen-Palm Flux

The RI2 and EP-flux vectors corresponding to Figure 1 are shown in Figure 2. Theory of planetary waves pre-
dicts waveguides in the regions of positive RI2 (see section 2). Values of RI2 depend on the zonal mean wind
and temperature (Andrews et al., 1987). The left and middle panels of Figure 2 show that regions of positive
RI2 for westward traveling PSWs exist in both Northern and Southern Hemispheres. At altitudes above 120 km
the regions of positive RI2 are wider and more homogeneous than those at lower altitudes. Comparisons of
the left and middle panels of Figure 2 reveal differences in RI2 values in the thermosphere, which can
influence PSW propagation.

Vectors of EP-fluxes in the left and middle panels of Figure 2 correspond to the westward traveling PSWs
generated mainly in the middle atmosphere. Then their energy can propagate upward along the
waveguides. Above, Figure 1 showed that the 4- and 5-day PSWs have substantial amplitudes in the
thermosphere of the Southern Hemisphere, while amplitudes of longer-period PSWs having slower
horizontal phase speeds are relatively small there. The left and middle panels of Figure 2 reveal regions of
negative RI2 in the Southern Hemisphere at altitudes below 100 km. The regions of negative RI2 in the left
and middle panels of Figures 2c–2e for longer-period PSWs are larger than those for the 4- and 5-day
PSWs in Figures 2a and 2b. Therefore, longer-period PSWs may have worse conditions for their propagation
in the middle atmosphere of the Southern Hemisphere, which can explain smaller amplitudes of longer-
period PSWs in the southern thermosphere in Figure 1.

The main maxima of 5-day PSW at altitudes 100–150 km in the Southern Hemisphere in Figure 1b can be
attributed to longer EP-flux vectors in these regions in Figure 2b. Similarly, longer EP-flux vectors exist at alti-
tudes 50–70 km in the midlatitude Northern Hemisphere in Figures 2c–2e, where the main maxima of the 7-,
10-, and 16-day PSWs are located in Figures 1c–1e.

Contrary to the 4- and 5-day PSWs, longer-period wave modes have larger amplitudes in the middle atmo-
sphere than those in the thermosphere in Figures 1c–1e. This may be connected with amplification of the
PSW amplitudes in the middle atmosphere caused by partial reflection of upward propagating waves from
the lower thermosphere (Lu et al., 2017). Considerations of the left and middle panels of Figure 2 reveal
regions of increased RI2 at altitudes 100–130 km at middle and high latitudes of the Northern Hemisphere.
Increased vertical gradients of RI2 in these regions may produce increasing partial reflection of PSWs propa-
gating from the lower atmospheric layers. Figure 2 shows that mentioned regions of RI2 > 0 at altitudes
100–130 km are larger and can span up to the North Pole for the 7-, 10-, and 16-day PSWs. This can confirm
a possibility of larger reflection of longer-period PSWs in the regions of lower thermosphere.
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Figure 2. Normalized refractivity index squared (colors) and corresponding EP-flux (m3/s2; arrows) produced by the west-
ward traveling PSWs with periods 4, 5, 7, 10, and 16 days (a–e, respectively) under the high SA (left), low SA (middle), and
their differences (right). Solid contours in panels correspond to zero values.
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At middle and high latitudes of the Southern Hemisphere in the left and middle panels of Figure 2, one can
see layers of increased RI2 for the 7-, 10-, and 16-day PSWs at altitudes below 100 km and above 200 km.
Possible partial reflections from these layers may explain small amplitudes of longer-period PSWs at altitudes
above 200 km in the southern thermosphere (see Figure 1).

In some cases, EP-flux vectors in Figure 3 are originating in the regions, where RI2 < 0 and PSW propagation
from below is not allowed. This may assume possible PSW generation in the middle and upper atmosphere.

The right panels of Figure 2 show differences in RI2 and EP-flux vectors between high and low SA levels. In the
Northern Hemisphere, maximum positive and negative RI2 differences exist at altitudes 90–120 km at middle
and high latitudes for the 7-, 10-, and 16-day PSWs. These differences may cause changes in PSW partial
reflection and in the proportion of wave energy propagating to the thermosphere. According to Figure 1,
such partial reflection should be stronger at high SA, which corresponds to smaller amplitudes of longer-
period PSWs at altitudes above 100 km. In the Southern Hemisphere, maximum RI2 differences for longer-
period PSWs occur at middle and high latitudes at altitudes below 100 km and above 200 km. Increased par-
tial reflections of longer-period PSWs in these regions may cause smaller wave amplitudes in the southern
thermosphere at high SA in Figure 1.

The differences in EP-flux vectors in the right panels of Figures 2c–2e for longer-period PSWs are directed fre-
quently toward the equator at altitudes below 100 km in the Northern Hemisphere, which corresponds to
larger southward EP-fluxes at high SA. This is most noticeable in the right panel of Figure 2d for the 10-day
PSW. It may be connected with larger partial reflection of longer-period PSWs propagating to the thermo-
sphere at high SA (see above) and with respective redistributions of vertical and horizontal EP-fluxes.

In many cases, vector differences in EP-flux have components directed upward and downward at high lati-
tudes in the right panels of Figure 3. This could be additional reasons for changes in general circulation at
different altitudes. According to theory, the upward and downward vertical components of EP-flux corre-
spond to northward and southward directions of the PSW heat flux (e.g., Andrews et al., 1987). Therefore, ver-
tical directions of EP-flux differences in Figure 3 may correspond to the warmer or cooler North and South
Poles, which can influence general circulation of the atmosphere (Holton & Mass, 1976).

3.3. Other Hydrodynamic Fields

In section 3.1, the analysis of PSW amplitudes was made for geopotential height simulated with the MUAM.
For comparisons with experiments, information about PSW amplitudes for the other hydrodynamic fields is
valuable. Figures 3–5 are similar to Figure 1 and represent amplitudes of westward traveling PSWs for east-
ward, u, northward, v, wind components, and temperature, T, respectively.

Westward traveling PSWs were observed at different altitudes in the stratosphere, mesosphere, and thermo-
sphere with different methods. Mitchell et al. (1999) used radiometeor radar and analyzed amplitudes of PSW
wind variations with periods around 16 days at altitudes 80–100 km and latitude of 54°N. They found ampli-
tudes up to 14m/s in January, which is comparable with the 16-day PSW amplitudes in Figures 3e and 4e. Day
et al. (2012) studied amplitudes of the 16-day and 5-day PSWs in the mesosphere and lower thermosphere
using radio meteor wind measurements and temperature data from the Aura satellite. At altitudes 80–
100 km and latitude of 42° they found amplitudes of several meters per second for wind and several kelvin
for temperature for the 16-day and 5-day PSWs, which satisfactorily match to Figures 3b, 3e, 5b, and 5e.

The analysis of 16-day PSW at altitudes 10–90 km was performed by Day et al. (2011) from the observations
with the Microwave Limb Sounder on the Aura satellite in years 2004–2010. They showed maxima of
temperature wave variations up to 8 K at latitudes 40–75°N and altitudes 30–50 km and 60–80 km in
January–February and amplitudes smaller than 1–2 K in the middle atmosphere of the Southern
Hemisphere. This corresponds to the PSW amplitude structure at altitudes below 100 km, in the left and mid-
dle panels of Figure 5.

Garcia et al. (2004) analyzed the 5-day PSW in the mesosphere and lower thermosphere observed with the
SABER instrument on the TIMED satellite in years 2001–2004. They found large temperature amplitudes of
the 5-day PSW up to 2.5–3.5 K both in the Northern and Southern Hemispheres. The amplitudes are compar-
able with those shown in Figure 5b and confirm propagation of westward 5-day PSW in both hemispheres.
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Figure 3. Same as Figure 1 but for zonal velocity in meters per second.
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Figure 4. Same as Figure 1 but for meridional velocity in meters per second.
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Figure 5. Same as Figure 1 but for temperature in kelvin.
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4. Discussion

Comparisons of PSW amplitudes of Figures 3–5 in the troposphere and lower stratosphere with analyses of
respective PSW modes from the meteorological reanalysis data bases (e.g., JRA-55, Kobayashi et al., 2015)
show that the amplitudes of tropospheric PSW sources in the present simulations correspond to climatologi-
cal level of PSW activity. Observations of PSWs in the thermosphere sometimes show larger values of their
amplitudes than shown in Figures 1 and 3–5 (e.g., Borries & Hoffmann, 2010; Gu et al., 2014). Such intensive
PSWs may correspond to existence of local intensive wave sources. Many experiments described in the litera-
ture were performed in other seasons than considered here northern winter. In addition, such intensive PSWs
are supposed to be amplified in the thermosphere by nonlinear wave-wave and wave-mean flow interactions
involving tides (e.g., Forbes et al., 2018; Laštovicka, 2006; Yamazaki & Richmond, 2013) and plasma drifts (Liu
& Richmond, 2013). The main goals of the present study are relative changes in PSW characteristics at differ-
ent SA levels, which are less sensitive to absolute wave amplitudes.

One may have concern that PSW amplitudes in the thermosphere shown in Figures 1, and 3–5 could not
reflect PSWs propagating from the lower atmosphere, but can be produced by the mathematical noise
and nonlinear interactions in the MUAM during simulations. Control MUAM runs with zero tropospheric
NM sources showed that MUAM indeed can generate westward traveling PSWs (see supporting information
Figures S5 and S6); however, in the thermosphere they are noticeablemainly at low SA at high latitudes of the
Northern Hemisphere, where their amplitudes are 2–4 times smaller than those presented in Figure 1.
Therefore, for considered waves, these figures represent mainly amplitudes of PSWs propagating to the ther-
mosphere from NM sources located near the lower boundary of the MUAM.

Considerations of Figures 1 and 3–5 show that westward traveling PSWs propagating from the lower atmo-
sphere in January–February can have generally higher amplitudes in the thermosphere at high latitudes of
the Northern Hemisphere. Amplitudes of PSW variations of u, v, and T in Figures 3–5 decreases above altitude
of 100 km, but they are still noticeable at altitudes up to 200 km and above, especially under low solar activity
conditions. At high altitudes, variations of geopotential height could be more sensitive to PSWs, propagating
from the lower atmosphere, because their amplitudes increase in altitude for many PSW modes in Figure 1.

Figure 1 and, especially, Figures 3–5 show sharp increases in PSW amplitudes just above altitude of 100 km.
This could be connected with sharp increases in Brunt-Vaisala frequency N due to big vertical temperature
gradients in the lower thermosphere. The wave activity flux, Fa, can be represented in the form of
Fa = cgA, where cg is the group speed and A is the wave activity (Andrews et al., 1987). The vertical component
of group velocity cgz ~m�1, wherem is the vertical wave number. According to the PW dispersion equation
(e.g., Andrews et al., 1987), an increase in N leads to increasingm. Discontinuity of the vertical component of
the wave activity flux Faz at increasingm requires respective increase in the wave activity A and in PSW ampli-
tudes. The main regions of positive vertical gradients of temperature and expected increasing A are the stra-
tosphere and the lower thermosphere. Figures 1 and 3–5 reveal maxima of PSW amplitudes in these regions.
Vertical temperature gradients in the lower thermosphere are larger during high solar activity. Therefore, one
should expect larger increase in PSW amplitudes at high SA. Indeed, PSW amplitudes in Figures 3–5 at alti-
tudes 100–120 km are in many cases larger at high SA compared to low SA, especially for temperature.

Increased PSW amplitudes and vertical wave numbers (corresponding to shorter vertical wavelengths) pro-
duce larger vertical gradients of all hydrodynamic fields in the lower thermosphere, which are subjects for
stronger molecular and turbulent dissipation at high SA compared to low SA. Additionally, higher ion content
produce stronger ion viscosity increasing PSW dissipation during high SA. This may explain generally smaller
amplitudes of westward traveling PSWs in the thermosphere at high SA found in Figures 1 and 3–5.

Increased vertical temperature gradients and Brunt-Vaisala frequency in the lower thermosphere can also
lead to partial reflections of PSWs propagating from below (Arnold & Robinson, 1998; Geller & Alpert,
1980). Temperature gradients and partial reflection should be stronger at high SA, which can contribute to
a smaller proportion of PSW energy penetrating to the thermosphere and to smaller PSW amplitudes in
the thermosphere at high SA in Figures 1 and 3–5.

Partial PSW reflection in the lower thermosphere and differences in RI2 and EP-flux vectors at altitudes below
100 km shown in the right panels of Figure 2 may cause differences in PSW characteristics and the zonal
mean circulation in the middle atmosphere at different SA levels. The right panels of Figures 1 and 3–5
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demonstrate some differences in the amplitudes of westward propagating PSWs at altitudes below 100 km.
However, it was discussed above that the statistical significance of these differences is not adequate at
altitudes below 100 km. Therefore, further simulations with larger number of model runs are required for
more statistically reliable conclusions about the role of changes in partial reflection of PSWs from the
thermosphere in possible influence of SA on the dynamics of the middle atmosphere.

5. Conclusion

The amplitudes and phases of westward traveling PSWs with the zonal wave numbers s = 1–2 and periods
4–16 days generated near the ground were calculated for the first time under high and low SA at altitudes
from the Earth’s surface up to 300 km. The effects of SA changes in the thermosphere on the low-amplitude
PSW propagation and reflection conditions were studied. For this purpose, the thermospheric version of the
MUAM numerical model was utilized. The two 12-member ensembles of simulations of general circulation for
the conditions corresponding to low and high SA were obtained.

To single out influence of the thermosphere, the SA changes were included into the MUAM at heights above
100 km only. The indicator of SA in the MUAM is the solar radio flux at the wavelength of 10.7 cm. The impact
of ionospheric charged particles on the neutral gas motion was accounted in the MUAM by including the
ionospheric conductivities and their spatial and temporal inhomogeneities for different SA levels.
Refractivity indices and EP-fluxes corresponding to the observed PSW modes were calculated.

In the model, the westward traveling PSWs are generated at the lower boundary, then their energy can pro-
pagate upward along the waveguides. The 4- and 5-day PSWs have comparable amplitudes of geopotential
height variations in both hemispheres, while PSWs with lower horizontal phase speeds have amplitude max-
imums in the Northern Hemisphere because of spacious regions with RI2< 0 in themiddle atmosphere of the
Southern Hemisphere. Regions of maximum PSW amplitudes correlate with the maxima in their EP-fluxes.

The 7-, 10-, and 16-day waves have significantly larger geopotential height amplitudes in the middle
atmosphere than in the thermosphere. It can be explained by both the partial reflection and changes in
PSW propagation conditions in the lower thermosphere. Changes in the background zonal velocity and
temperature caused by the SA variations can modify spatial distributions of the westward traveling PSWs.
Wave amplitudes are significantly (up to 100%) smaller at the thermospheric heights under high SA, which
is accompanied by a smaller EP-flux vertical component. The most significant decrease in the PSW amplitude
in the thermosphere is found for the 16-day wave.

The statistical significance of nonzero differences in PSW amplitudes between the high and low SA conditions
is higher than 95% at altitudes above 100–150 km. For more reliable conclusions about the SA influence in
the lower and middle atmosphere, more statistically significant numerical modeling is required. In addition,
the simulations should involve not only thermospheric influence but also effects of changes in solar
irradiance and cosmic rays intensity on the dynamical processes in the middle atmosphere.
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