ХИМИЧЕСКАЯ ФИЗИКА, 2018, том 37, № 5, с. 93–106

ХИМИЧЕСКАЯ ФИЗИКА АТМОСФЕРНЫХ ЯВЛЕНИЙ

УДК 550.385.21

МОДЕЛИРОВАНИЕ АТМОСФЕРНЫХ ПРИЛИВОВ С УЧЕТОМ СУТОЧНЫХ ВАРИАЦИЙ ИОНОСФЕРНЫХ ПРОВОДИМОСТЕЙ

© 2018 г. Н. О. Шевчук^{1,*}, М. Ю. Ортиков², А. И. Погорельцев^{1,3}

¹ Санкт-Петербургский государственный университет ²Военно-космическая академия им. А.Ф. Можайского, Санкт-Петербург ³ Российский государственный гидрометеорологический университет, Санкт-Петербург *E-mail: n.o.shevchuk@mail.ru

Поступила в редакцию 03.11.2017

В работе описана полуэмпирическая модель ионосферных проводимостей, необходимых для расчета коэффициентов ионного трения и магнитного закручивания. Рассмотрено влияние суточных вариаций ионного трения и магнитного закручивания в верхней атмосфере на формирование широтной и высотной структур различных компонент атмосферных приливов. Показано, что учет суточных вариаций приводит к дополнительной генерации немигрирующих приливов в термосфере за счет нелинейного взаимодействия мигрирующих приливов с вариациями этих величин.

Ключевые слова: атмосферные приливы, численное моделирование, магнитное закручивание, ионное трение, ионосфера, термосфера.

DOI: 10.7868/S0207401X18050126

1. ВВЕДЕНИЕ

Воздух на ионосферных высотах подвергается заметной ионизации под воздействием солнечной радиации. Ионизация приводит к тому, что воздушную среду становится целесообразным рассматривать и моделировать как плазму. Плазма, в свою очередь, представляет собой смесь заряженных и нейтральных частиц. Присутствие заряженных частиц при наличии внешнего магнитного поля влияет на расчетные значения характеристик общей циркуляции на ионосферных высотах.

Модель средней и верхней атмосферы (МСВА) позволяет выполнять моделирование общей циркуляции атмосферы с произвольным числом вертикальных уровней: от 48 до 60 (геопотенциальные высоты от 0 до 150 и/или 350-400 км в зависимости от температуры термосферы) [1]. При использовании ранних версий модели ставились задачи, связанные с динамикой средней атмосферы, и влияние заряженных частиц задавалось схематически через среднесуточные среднеглобальные профили ионного трения и магнитного закручивания. Для более правильного учета влияния заряженных частиц на движение нейтрального газа на термосферных высотах необходим также учет широтной, долготной и временной зависимостей ионосферных проводимостей. В связи с чем была поставлена задача о создании полуэмпирической глобальной модели ионосферных проводимостей на основе моделей нейтральной атмосферы NRLMSISE-00 [2] и ионосферы IRI_Plas [3], учитывающей суточные вариации. Основная цель настоящей статьи — включение коэффициентов ионного трения и магнитного закручивания, рассчитанных с использованием этой модели, в MCBA и определение на основании модельных расчетов основных компонент немигрирующих приливов, которые необходимо учитывать при построении эмпирических моделей нейтральной атмосферы на основе аппроксимации экспериментальных данных.

2. ПОЛУЭМПИРИЧЕСКАЯ МОДЕЛЬ

Ниже записаны уравнения движения для горизонтальных составляющих скорости ветра с учетом электромагнитной силы Лоренца [4, 5]:

$$\frac{du}{dt} - \left(2\Omega\sin\varphi + \frac{u\mathsf{tg}\varphi}{a}\right)v =$$

$$= -\frac{1}{a\rho\cos\varphi}\frac{\partial p}{\partial\lambda} + \frac{1}{\rho}\frac{\partial}{\partial z}\mu_{1}\frac{\partial u}{\partial z} + \frac{1}{c\rho}[\mathbf{jH}]_{\lambda},$$

$$\frac{dv}{dt} + \left(2\Omega\sin\varphi + \frac{u\mathsf{tg}\varphi}{a}\right)u =$$

$$= -\frac{1}{a\rho}\frac{\partial p}{\partial\varphi} + \frac{1}{\rho}\frac{\partial}{\partial z}\mu_{1}\frac{\partial v}{\partial z} + \frac{1}{c\rho}[\mathbf{jH}]_{\varphi},$$

где u – зональная скорость ветра, v – меридиональная скорость ветра, Ω – угловая скорость

_

вращения Земли, a – радиус Земли, φ – широта, λ – долгота, z – высота, ρ – плотность воздуха, p – давление, μ_1 – коэффициент молекулярной вязкости, c – электродинамическая постоянная (скорость света в вакууме), **H** – вектор напряженности магнитного поля.

Плотность электрического тока (**j**) выражается через электрическое поле (**E**) с помощью закона Ома для ионосферной плазмы и определяется как

$$\mathbf{j} = \boldsymbol{\sigma}_0(\mathbf{E}\mathbf{H})\mathbf{H}/H_0^2 + \boldsymbol{\sigma}_1[\mathbf{[HE]H}]/H_0^2 + \boldsymbol{\sigma}_2[\mathbf{HE}]/H_0,$$

где σ_0 , σ_1 и σ_2 – продольная проводимость, поперечные проводимости Педерсена и Холла, соответственно; H_0 – абсолютное значение напряженности поля **H**.

Пренебрегая электростатической компонентой поля и вертикальной составляющей скорости ветра, а также считая магнитное поле Земли дипольным, для долготной (E_{λ}) , широтной (E_{φ}) и высотой (E_{z}) проекций электрического поля имеем

$$E_{\lambda} = \frac{1}{c}vH_z, \ E_{\varphi} = -\frac{1}{c}uH_z, \ E_z = \frac{1}{c}uH_{\varphi},$$

где H_{ϕ}, H_{z} — широтная и высотная проекции напряженности магнитного поля.

Представляя компоненты плотности электрического тока следующим образом:

$$j_{\lambda} = \frac{\sigma_1 v H_z}{c} + \frac{\sigma_2 u H_0}{c}, \quad j_{\varphi} = -\frac{\sigma_1 u H_z}{c} + \frac{\sigma_2 v H_z^2}{c H_0},$$
$$j_z = \frac{\sigma_1 u H_{\varphi}}{c} - \frac{\sigma_2 v H_z H_{\varphi}}{c H_0},$$

для силы Лоренца, окончательно получим

$$\frac{1}{c}[\mathbf{jH}]_{\lambda} = -\frac{\sigma_1 u H_0^2}{c^2} + \frac{\sigma_2 v H_z H_0}{c^2},$$
$$\frac{1}{c}[\mathbf{jH}]_{\varphi} = -\frac{\sigma_1 v H_z^2}{c^2} - \frac{\sigma_2 u H_z H_0}{c^2}.$$

Тогда уравнения движения для горизонтальных компонент скорости ветра можно записать в следующем виде:

$$\frac{du}{dt} - \left(2\Omega\sin\varphi + \frac{u\mathrm{tg}\varphi}{a} + \frac{\sigma_2 H_z H_0}{c^2}\right)v =$$

$$= -\frac{1}{a\rho\cos\varphi}\frac{\partial p}{\partial\lambda} + \frac{1}{\rho}\frac{\partial}{\partial z}\mu_1\frac{\partial u}{\partial z} - \frac{\sigma_1 u H_0^2}{\rho c^2},$$

$$\frac{dv}{dt} + \left(2\Omega\sin\varphi + \frac{u\mathrm{tg}\varphi}{a} + \frac{\sigma_2 H_z H_0}{c^2}\right)u =$$

$$= -\frac{1}{a\rho}\frac{\partial p}{\partial \varphi} + \frac{1}{\rho}\frac{\partial}{\partial z}\mu_1\frac{\partial v}{\partial z} - \frac{\sigma_1 v H_z^2}{\rho c^2}.$$

Очевидно, что слагаемые, содержащие σ_2 , ведут себя аналогично силе Кориолиса (эффект магнитного закручивания) с противоположным знаком (так как вертикальная компонента магнитного поля в дипольном приближении пропорциональна синусу широты со знаком минус), т.е. магнитное закручивание компенсирует силу Кориолиса, приводя к ослаблению геострофичности крупномасштабных течений в динамо-области ионосферы [5]. Слагаемые, содержащие σ_2 , пропорциональны соответствующей составляющей скорости со знаком минус, обеспечивающей ионное торможение (релеевское трение).

Учет влияния заряженных частиц при моделировании общей циркуляции требует расчета коэффициентов магнитного закручивания и ионного трения. Достаточно рассчитать эти коэффициенты в уравнении только для зональной компоненты скорости, так как коэффициент ионного трения в уравнении движения для меридиональной скорости отличается только геометрическим множителем, а выражения для магнитного закручивания одинаковы в обоих уравнениях. Ионосферные проводимости, продольная (σ_0), Педерсена (σ_1) и Холла (σ_2), рассчитывались с использованием эмпирических моделей электронной концентрации и нейтрального состава по следующим формулам:

$$egin{aligned} \sigma_0 &= eNig(\mu_0^e+\mu_0^iig), \ \ \sigma_1 &= eNig(\mu_1^e+\mu_1^iig), \ \ \sigma_2 &= eNig(\mu_2^e-\mu_2^iig), \end{aligned}$$

где *е* – элементарный электрический заряд (заряд электрона), *N* – концентрация электронов.

Подвижности электронов и ионов в этих уравнениях определяются при помощи следующих выражений [6, 7]:

$$\begin{split} \mu_{0}^{e} &= \frac{e}{m_{e} \nu_{e}}, \ \mu_{1}^{e} = \frac{e}{m_{e} A \nu_{in}^{2}} \Big(\omega_{i}^{2} \nu_{en} + \nu_{e} \nu_{in}^{2} \Big), \\ \mu_{2}^{e} &= \frac{e \omega_{e}}{m_{e} A \nu_{in}^{2}} \Big(\omega_{i}^{2} + \nu_{in}^{2} + \frac{m_{e}}{m_{i}} \nu_{ei} \nu_{in} \Big); \\ \mu_{0}^{i} &= \frac{e}{m_{i} \nu_{e}} \frac{\nu_{en}}{\nu_{in}}, \ \mu_{1}^{i} = \frac{e}{m_{i} A \nu_{in}} \Big(\omega_{e}^{2} + \nu_{e} \nu_{en} \Big), \\ \mu_{2}^{e} &= \frac{e \omega_{e}}{m_{e} A \nu_{in}^{2}} \Big(\omega_{i}^{2} + \nu_{in}^{2} + \frac{m_{e}}{m_{i}} \nu_{ei} \nu_{in} \Big). \end{split}$$

Здесь m_e и m_i — масса электрона и средняя масса ионов; $\omega_e u \omega_i$ — циклотронная (ларморовская) частота для электронов и ионов; v_{ei} , v_{en} и v_{in} частоты столкновений электронов с ионами, электронов с нейтралами и ионов с нейтралами

ХИМИЧЕСКАЯ ФИЗИКА том 37 № 5 2018

Рис. 1. Широтно-высотное распределение среднезональных среднесуточных значений ионного трения (a) и магнитного закручивания (δ).

соответственно. При этом величины v_e и A равны

$$\begin{aligned} \mathbf{v}_e &= \mathbf{v}_{ei} + \mathbf{v}_{en}, \\ A &= A_1 + A_2 = \frac{\omega_e^2}{\mathbf{v}_{in}^2} \bigg(\omega_i^2 + \mathbf{v}_{in}^2 + 2\frac{m_e}{m_i} \mathbf{v}_{ei} \mathbf{v}_{in} \bigg). \end{aligned}$$

3. РЕЗУЛЬТАТЫ РАСЧЕТОВ ИОНОСФЕРНЫХ ПРОВОДИМОСТЕЙ

Коэффициенты магнитного закручивания и ионного трения рассчитывались для всех широт и долгот модели с учетом суточных вариаций для 23 уровней МСВА (от 100 до 380 км). Долготные зависимости исследуемых величин аппроксимировались в каждый момент времени суммой среднезонального значения и набором из четырех зональных гармоник. После этого каждая гармоника аппроксимировалась стационарной волной и четырьмя перемещающимися на запад временными гармониками с периодами T = 24, 12, 8 и 6 ч. В результате в МСВА задавались амплитуды и фазы рассчитанных гармоник и среднезональные значения коэффициентов магнитного закручивания и ионного трения, что позволяло рассчитывать их в произвольный момент модельного времени.

На рис. 1 приведены среднесуточные широтно-высотные распределения ионного трения (a) и магнитного закручивания (δ), усредненные по долготам при заданной солнечной активности

ХИМИЧЕСКАЯ ФИЗИКА том 37 № 5 2018

(число Вольфа равно 70). На этом рисунке, как и на всех последующих, значение магнитного закручивания приводится с фактором 10^{-6} , а ионного трения – 10⁻⁵. Максимальные значения коэффициента ионного трения достигаются в верхней термосфере низких широт ($60 \cdot 10^5 c^{-1}$ для северного и $45 \cdot 10^5 \,\mathrm{c}^{-1}$ для южного полушарий). Коэффициент магнитного закручивания равен нулю на экваторе, имеет положительные значения в южном полушарии с максимумом $16 \cdot 10^6$ с⁻¹ на южном полюсе на высотах 116-125 км и отрицательные значения в северном полушарии с минимумом $-6 \cdot 10^6 \text{ c}^{-1}$ в низких и средних широтах на высотах 116-130 км. Амплитуды стационарных волн в ионном трении и магнитном закручивании малы по сравнению с их суточными вариациями (на рисунках они не представлены, но в модели учитываются).

На рис. 2 представлены амплитуды временны́х гармоник, бегущих на запад и восток, с зонально-волновым числом m = 1 и периодами: T = 24, 12, 8 и 6 ч в магнитном закручивании. Приливные компоненты в атмосфере характеризуется парой чисел (m, T), где m – зональное волновое число и T – период, причем положительные периоды характеризуют волны, распространяющиеся на восток, а отрицательные – на запад. Согласно рис. 2, амплитуда прилива (1, -24) имеет два максимума на высоте 120–130 км: $14 \cdot 10^6$ с⁻¹ в средних широтах южного полушария и $9 \cdot 10^6$ с⁻¹ в низких широтах северного полушария. На данных высотах и широтах наблюдаются следующие максимумы амплитуд

Рис. 2. Амплитуды временны́х гармоник, бегущих на запад, с периодами T=24, 12, 8 и 6 ч в магнитном закручивании для зонального волнового числа m=1.

прилива (1, -12): $1.6 \cdot 10^6 \text{ c}^{-1}$ в южном и $0.8 \cdot 10^6 \text{ c}^{-1}$ в северном полушариях, и прилива (1, -8): $0.6 \cdot 10^6 \text{ c}^{-1}$ в южном и $0.4 \cdot 10^6 \text{ c}^{-1}$ в северном полушариях. Амплитуда прилива (1, -6) имеет максимум $0.3 \cdot 10^6 \text{ c}^{-1}$ только в южном полушарии на высоте 118–128 км в средних широтах.

Амплитуды бегущих на запад приливов с волновым числом m = 2 и периодами T = 24, 12, 8 и 6 ч в магнитном закручивании показаны на рис. 3.

Прилив (2, -24) имеет два максимума амплитуды на высотах 120-127 км: $3.5 \cdot 10^6 \text{ c}^{-1}$ в южном полушарии на средних широтах и $2.5 \cdot 10^6 \text{ c}^{-1}$ в северном полушарии на низких и средних широтах. Амплитуда прилива (2, -12) также имеет на этих высотах два максимума: $2.5 \cdot 10^6 \text{ c}^{-1}$ в южном полушарии в низких широтах и $4.5 \cdot 10^6 \text{ c}^{-1}$ в северном полушарии на средних широтах. Прилив (2, -8) имеет следующие максимумы амплитуд $1 \cdot 10^6 \text{ c}^{-1}$ на

Рис. 3. То же, что и на рис. 2, но для *m* = 2.

высоте 122–125 км на широте 55–60° S и 0.5 с⁻¹ на высоте 120–125 км на средних широтах. На высоте 120–125 км наблюдаются также максимумы амплитуд прилива (2, -6): $0.3 \cdot 10^6$ с⁻¹ на низких и средних широтах обоих полушарий.

На рис. 4 показаны амплитуды временны́х гармоник с зонально-волновым числом m = 1 и периодами T = 24, 12, 8 и 6 ч в ионном трении. Бегущий на запад прилив (1, -24) имеет максимум $25 \cdot 10^5$ с⁻¹

ХИМИЧЕСКАЯ ФИЗИКА том 37 № 5 2018

в южном полушарии на высоте 290 км в низких широтах и максимум $35 \cdot 10^5 \text{ c}^{-1}$ на высоте 300 км в низких широтах. Амплитуда прилива (1, -12) также имеет два максимума: $4 \cdot 10^5 \text{ c}^{-1}$ на высоте 280 км и выше в низких широтах южного полушария и $8 \cdot 10^5 \text{ c}^{-1}$ на высоте 290 км в низких широтах северного полушария. У прилива (1, -8) наблюдается один максимум амплитуды $5 \cdot 10^5 \text{ c}^{-1}$ в низких широтах северного полушария на высоте 290 км.

Рис. 4. Амплитуды временны́х гармоник, бегущих на запад, с периодами T = 24, 12, 8 и 6 ч в ионном трении для зонального волнового числа m = 1.

В южном полушарии амплитуда данного прилива имеет значение $1 \cdot 10^5 \text{ c}^{-1}$ в низких и средних широтах на высотах от 240 км и выше. Прилив (1, -6) наблюдается только в низких широтах северного полушария на высотах от 260 км и выше, его амплитуда имеет значение $1 \cdot 10^5 \text{ c}^{-1}$.

Амплитуды бегущих на запад приливов с волновым числом m = 2 и периодами T = 24, 12, 8 и 6 ч в ионном трении показаны на рис. 5. На высоте

300 км амплитуда прилива (2, -24) имеет два максимума: $9 \cdot 10^5 c^{-1}$ в южном полушарии в низких широтах и $12 \cdot 10^5 c^{-1}$ в северном полушарии в средних широтах. Прилив (2, -12) имеет три максимума амплитуд: $10 \cdot 10^5 c^{-1}$ на высоте 300 км в низких широтах южного полушария, $10 \cdot 10^5 c^{-1}$ в северном полушарии на высоте 270–300 км в низких широтах и $11 \cdot 10^5 c^{-1}$ на высоте 260–290 км в средних широтах. Прилив (2, -8) наблюдается в низких широтах южного полушария (максимум $3 \cdot 10^5 c^{-1}$ на

Рис. 5. То же, что и на рис. 4, но для *m* = 2.

высоте 300 км) и в северном полушарии (максимум $3 \cdot 10^5 c^{-1}$ на высоте 230–290 км). Амплитуды прилива (2, -6), наблюдаемого только в северном полушарии, очень малы, также имеется максимум $3 \cdot 10^5 c^{-1}$ на высоте 280 км и выше. Анализ приливов в ионном трении и магнитном закручивании с другими периодами и зональными числами (изображения не приведены) показывает, что мигрирующие приливы являются наиболее значительными.

4. РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ АТМОСФЕРНЫХ ПРИЛИВОВ С УЧЕТОМ ВАРИАЦИЙ ПРОВОДИМОСТЕЙ

Результаты моделирования приливов с помощью модели МСВА приведены на рис. 6–11. Из этих рисунков видно, что учет магнитного закручивания и ионного трения необходим при расчете динамики атмосферы, особенно в верхней термосфере. На рис. 9–11 представлены вертикальные

Рис. 6. Амплитуды приливных колебаний зонального ветра для *m* = 1 и высоты в 240 км. Слева – приливы, бегущие на запад, справа – на восток.

Рис. 7. То же, что и на рис. 6, но для *m* = 2.

Рис. 8. То же, что и на рис. 6, но для *m* = 3.

Амплитуда прилива в зональном ветре, м/с

Рис. 9. Высотный профиль амплитуды приливных колебаний зонального ветра для m = 1 и 45° N. Слева – приливы, бегущие на запад, справа – бегущие на восток.

Рис. 10. То же, что и на рис. 9, но для *m* = 2.

Рис. 11. То же, что и на рис. 9, но для *m* = 3.

профили амплитуд приливов в зональном ветре с разными зональными числами и периодами (линии с кружками отвечают модельным результатам с учетом магнитного закручивания и ионного трения, линии с ромбами — без учета). На высотах порядка 150 км и выше наблюдается расхождение двух рассматриваемых высотных профилей. Анализ полученных результатов показывает, что влияние магнитного закручивания и ионного трения в основном сказывается на усилении немигрирующих приливов в атмосфере (рис. 6*6*, 6*8*, 6*3*, 7*0*, 7*e*, 8*a*, 8*6*, 9*a*, 9*6*, 10*a*, 10*ж*, 11*a*, 11*6*, 11*в*) и на ослаблении мигрирующих приливов (рис. 6*a*, 7*e*, 8*d*, 10*e*, 11*d*).

Согласно [8, 9], при прохождении через систему с квадратичной нелинейностью сигнал, состоящий из двух синусоидальных волн с зональными числами и частотами: (m_1, σ_1) и (m_2, σ_2) , генерирует вторичные гармоники. Они обладают комбинационными зональными характеристиками и частотами: $(2m_1, 2\sigma_1), (2m_2, 2\sigma_2)$ и $(m_1 + m_2, \sigma_1 + \sigma_2),$ $(m_1 - m_2, \sigma_1 - \sigma_2)$ соответственно. Таким образом, одним из источников немигрирующих приливов является нелинейное взаимодействие мигрирующих приливов и стационарных планетарных волн в стратосфере [10]. Аналогичным образом нелинейные взаимодействия мигрирующих атмосферных приливов с суточными вариациями магнитного закручивания и ионного трения приводят к генерации немигрирующих приливов на термосферных высотах.

Рисунки 6-9 демонстрируют широтный ход амплитуды приливов в зональном ветре для разных зональных чисел и периодов на высоте 240 км. Эти рисунки также подтверждают необходимость учета магнитного закручивания и ионного трения при моделировании поведения верхней атмосферы. На указанной высоте в структуре приливов (как мигрирующих, так и немигрирующих) заметны значительные изменения. Как видно из данных рисунков, при включении в модель части по расчету проводимостей на данных высотах происходит в основном усиление всех рассматриваемых приливных гармоник, за исключением мигрирующего прилива (2, -12), который усиливается лишь в диапазоне широт от 90° S до 30° S, но ослабляется на других широтах. Суточные вариации магнитного закручивания и ионного трения сказались несущественно на структуре приливов в динамо-области (на высоте 120 км – на рисунках не приведено), однако следует помнить, что мы рассматривали спокойные геомагнитные условия. В случае высокой солнечной и/или геомагнитной активности компенсация силы Кориолиса за счет магнитного закручивания может оказаться сушественной. и этот вопрос требует дальнейшего рассмотрения.

5. ЗАКЛЮЧЕНИЕ

В статье описана модель ионосферных проводимостей, базирующаяся на эмпирических моделях нейтральной атмосферы NRL–MSISE и ионосферы IRI-Plas. Расчет проводимостей необходим для определения двух важных при моделировании динамики атмосферы параметров: коэффициентов ионного трения и магнитного закручивания. Расчет данных параметров осуществлялся для зимних условий (середина января) и средней солнечной активности (число Вольфа равно 70).

В статье проведено сравнение результатов моделирования приливов в зональном ветре с учетом и без учета их суточных вариаций. Анализ полученных результатов позволяет сделать вывод, что учет магнитного закручивания и ионного трения ведет к ослаблению мигрирующих и усилению немигрирующих приливов на высотах термосферы. Также было показано, что основными компонентами немигрирующих приливов, необходимых для учета при построении эмпирических моделей нейтральной атмосферы на высотах верхней ионосферы, являются компоненты (1, -12), (1, -8), (2, -24), (2, -8), (3, -12), (3, -6).

Работа выполнена при поддержке Российским научным фондом (грант № 14-17-00685). Модификация МСВА для включения суточных вариаций ионного трения и магнитного закручивания выполнена при поддержке Совета по грантам Президента РФ (грант MK-1424.2017.5).

СПИСОК ЛИТЕРАТУРЫ

- Pogoreltsev A.I., Vlasov A.A., Fröhlich K. et al // J. Atmos. Sol.-Terr. Phys. 2007. V. 69. P. 2083.
- Picone J.M., Hedin A.E., Drob D.P. et al // J. Geophys. Res. 2002. V. 107. № A12. P. 1221.
- Gulyaeva T.L., Huang X., Reinich B.W. //Act. Geod. Geophys. Hu. 2002. V. 37. № 3. P. 25.
- 4. *Гериман Б.Н.* Динамика ионосферной плазмы. М.: Наука, 1974.
- 5. Глушаков М.Л., Дулькин В.Н., Ивановский А.И. // Геомагнетизм и аэрономия. 1979. Т. 19. № 4. С. 663.
- 6. Гуревич А.В., Цедилина Е.Е. // УФН. 1967. Т. 91. С. 609.
- Pogoreltsev A.I. // J. Atmos. Sol.-Terr. Phys. 1996. V. 58. № 10. P. 1125.
- 8. Spizzichino A. // Ann. Geophys. 1969. V. 25. P. 773.
- Pogoreltsev A.I. // Phys. Chem. Earth (C). 2001. V. 26. № 6. P. 395.
- 10. *Суворова Е.В., Погорельцев А.И.* // Геомагнетизм и аэрономия. 2011. Т. 51. № 1. С. 107.

ХИМИЧЕСКАЯ ФИЗИКА том 37 № 5 2018